

FreeExams.co.ke

UNIVERSITY REGULAR EXAMINATIONS 2023/2024 ACADEMIC YEAR

YEAR TWO SEMESTER ONE EXAMINATIONS

FOR THE DEGREE OF COMPUTER SCIENCE

COURSE CODE: CSC 211

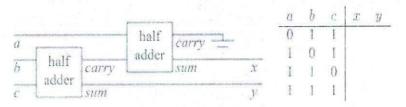
OURSE TITLE: DIGITAL ELECTRONICS II

DATE: 14/12/2023 TIME: 14:00 HRS - 16:00 HRS

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE AND ANY OTHER TWO (2) QUESTIONS

QUESTION ONE (COMPULSORY) [30 MARKS]


- a) Draw two truth tables illustrating the outputs of a half-adder, one table for the output and the other for the carry. [4 Marks]
- b) Outline THREE ways that RAMs are different from ROM [3 Marks]
- c) A 5-bit D/A converter produces $V_{OUT} = 0.2 \text{ V}$ for a digital input of 0001. Find the value of V_{out} for an input of 11111. [4 Marks]
- d) List <u>TWO</u> advantages of synchronous sequential logic circuit and <u>TWO</u> disadvantages of asynchronous sequential logic circuit? [2 Marks]
- e) Draw the truth table for a 2-to-4 decoder (i.e., 2 control inputs, C₁, C₀, and 4 outputs, P₃, P₂, P₁, P₀) and show how it can be implemented using 2-input NOR and NOT gates. [4 Marks]
- f) What is the difference between latch and flip flop? [3 Marks]
- g) Draw a diagram to illustrate the 2-to-4 decoder can be used to implement a 4-to-1 multiplexer (i.e., 4 inputs, 2 control inputs and 1 output) using only NAND gates for the additional combinational logic required. [4 Marks]
- h) Give the truth table for an encoder that accepts a sign bit, S, and two magnitude bits X₀, X₁ and gives a three-bit output Y₂, Y₁, Y₀ that are the two's complement encoding of the input. [3 Marks]
- i) Complete the following truth table that describes a single-bit full adder:

	$C_{\rm IN}$	A	В	Cour	sum
(Acade	0	0	()	0	
	0	0	1	0	
	()	1	0	0.	
	0	12	1	1	
	1	0	0	0	
	1	0	1	1	
	1	1	0	1	
	1	1	1 :		

where C_{IN} is carry-in, A and B are the input data, C_{OUT} is carry-out and sum is the sum output. Remember to write your answer on the script paper, i.e. not on the question paper. [3 Marks]

QUESTION TWO [20 MARKS]

- a) Assume the following values for the ADC clock frequency = 1 MHz; $V_T = 0.1 \text{mV}$; DAC has F.S. output = 10.23 V and a 10-bit input. Determine the following values
 - i. The digital equivalent obtained for $V_A = 3.728 \text{ V}$. [5 Marks]
 - ii. The conversion time. [3 Marks]
 - iii. The resolution of this converter. [2 Marks]
- b) Fill in the truth table at right for the following circuit. Ignore rows not included in the table. [4 Marks]

Using only four-bit adders, construct an eight-bit adder. Each four-bit adder has two four-bit inputs and one five-bit output. Your eight-bit adder should have two eight-bit inputs and a one eight-bit output (don't worry about the ninth output bit)

[6 Marks]

QUESTION THREE [20 MARKS]

- a) Using two 2-input NOR gates illustrate how to implement an RS latch. Describe its operation and give its truth table. [3 Marks]
- b) With the aid of a diagram explain what a sequential circuit is. [4 Marks]
- c) Outline <u>TWO</u> main differences between synchronous and asynchronous sequential logic circuit? [4 Marks]
- d) With the aid of a diagram, show how a Transparent D-Latch can be implemented using cross-coupled NOR gates and some additional combinational logic. What are the advantages of the Transparent D-Latch over the RS latch? [5 Marks]
- e) The truth table of a 2-to-4 line decoder is presented in the table below.

	inputs			outputs				
	AI	A()	EN.	S3	S2	S1	S0	
4000	X	X	()	0	0	0	0	
	0	()	1	0	0	0	1	
	0	1	1	0	()	1	0	
	1	()	1	0	1	0	0	
	1	1	1	1	1)	0	O	

What are the minimum sum-of-products equations for each output of the 2-to-4 line decoder? [4 marks]

QUESTION FOUR [20 MARKS]

a) Outline <u>TWO</u> advantages and <u>TWO</u> disadvantages of R-2R ladder DAC.

[4 Marks]

- b) What is the largest value of output voltage from an 8-bit DAC that produces 1.0V for a digital input of 00110010? [2 Marks]
- c) A 2-bit binary adder sums two numbers, A_1A_0 and B_1B_0 to yield the unsigned result $Y_2Y_1Y_0$, where the zero subscript indicates the least significant bit (LSB).
 - (i) Write down the truth table for the required outputs Y_2 , Y_1 and Y_0 .

[3 Marks]

(ii) Using a Karnaugh map (K-map) or otherwise, give the simplified sum of products expression for Y₂. [3 Marks]

(iii) Using a K map or otherwise, determine a simplified product of sums expression for Y₂ and show how the circuit can be implemented using only NOR gates (of any number of inputs). [4 Marks]

d) A 5-bit DAC has a current output. For a digital input of 101000, an output current of 10mA is produced. What will I_{OUT} be for a digital input of 11101? [4 Marks]

QUESTION FIVE [20 MARKS]

a) Explain the function of a counter in sequential circuits. [4 Marks]
b) Derive a circuit that implements an 8-to-3 binary encoder
c) Outline TWO types of each of ADC and DAC. [4 Marks]
d) State and briefly explain THREE performance parameters of D/A converters
[6 Marks]