

## UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR

## END OF SEMESTER EXAMINATIONS YEAR THREE SEMESTER ONE EXAMINATIONS

## FOR THE DEGREE OF BACHELOR OF SCIENCE COMPUTER SCIENCE

COURSE CODE : CSC 351E

COURSE TITLE : MICROPROCESSORS SYSTEMS

DESIGN

TIME: 14:00 HRS -- 16:00 HRS

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTIONS ONE AND ANY OTHER TWO

QUESTION ONE [COMPULSORY] [30 MARKS]

| a) | Explain the functions of the following pins of 8085uP                                 |                        |
|----|---------------------------------------------------------------------------------------|------------------------|
| 4) | i) INTR                                                                               | [1 Mark]               |
|    | ii) READY                                                                             | [1 Mark]               |
|    | iii) <i>INTA</i>                                                                      | [1 Mark]               |
|    | iv) Reset out                                                                         | [1 Mark]               |
| b) | Clearly distinguish between Von Neumann and Harvard architecture models.              |                        |
| 0) |                                                                                       | [4 Marks]              |
| c) | Give two advantages of each of the architectural models in question                   | n 1b above.            |
|    |                                                                                       | [4 Marks]              |
| d) | Name and explain the two types of Programmable Input/Output data transfer techniques  |                        |
|    |                                                                                       | [4 Marks]              |
| e) | Write an Assembly Language Program to divide contents of accumulator by contents of B |                        |
|    | register. The resulting quotient be stored in C register while the rer                | nainder be stored in D |
|    | register. Let your program reside from memory address 2040.                           | [5 Marks]              |
| f) | Identify the type of instruction in each of the instructions below:                   |                        |
|    | i) ANI 80H                                                                            | [1 Mark]               |
|    | ii) LDAX D                                                                            | [1 Mark]               |
|    | iii) JC 4100H                                                                         | [1 Mark]               |
|    | iv) SIM                                                                               | [1 Mark]               |
| g) | A 512KB memory chip has 8 pins for data. Find:                                        |                        |
|    | i) The organization                                                                   | [1 Mark]               |
|    | ii) The number of address pins for this memory chip.                                  | [2 Marks]              |
|    | iii) The address range of the chip                                                    | [2 Marks]              |
|    | QUESTION TWO [20 MARKS]                                                               |                        |
| a) | Determine the addressing mode in each of the assembly instruction below:              |                        |
|    | 1. ADD B                                                                              | [1 Mark]               |
|    | 2. LXI SP, 20B0H                                                                      | [1 Mark]               |
|    | 3. LDAX B                                                                             | [1 Mark]               |
|    | 4. ORA D                                                                              | [1 Mark]               |
|    | 5. STA 4030H                                                                          | [1 Mark]               |
|    | 6. MOV C, B                                                                           | [1 Mark]               |
|    | 7. RST 4                                                                              | [1 Mark]               |
|    | 8. NOP                                                                                | [1 Mark]               |
| b) | Below is a Hexcode for a certain program. Write its equivalent As                     |                        |
|    | 3AH 10H 30H 47H 3AH 11H 30H 80H 32H 12H 30H 76                                        |                        |
|    |                                                                                       | [5 Marks.]             |
| c) | Name and discuss any three techniques of Direct Memory Access                         | [7 Marks]              |

QUESTION THREE [20 MARKS] Show the contents of the accumulator and the status of the flag bits after each of the a) following operations: [4 Marks] i) 36H+45H [3 Marks] ii) 20H - 20H [3 Marks] iii) 78H-A9H A certain program is needed to count from 255 to zero, then upwards from zero to F0H. For every count it gives an output at PORT 21H. Write a program to achieve this task. Let 6) [10 Marks] the program run in an endless loop. QUESTION FOUR [20 MARKS] A 8-bit memory requires 3KB of RAM and 1KB of ROM. Draw the memory map a) assuming ROM starts from 0000h and is followed by RAM [5 Marks] i) Write an algorithm of a program to exchange the contents of memory locations b) [3 Marks] 2000H and 4000H ii) Write an assembly program to achieve the task based on your algorithm. [4 Marks] Define the tools below as used in programming languages c) [2 Marks] i) A loader [2 Marks] ii) A linker [2 Marks] iii) Compiler [2 Marks] iv) Assembler QUESTION FIVE [20 MARKS] [2 Marks] What is an interrupt? a) Identify five events that may lead to generation of an interrupt [5 Marks] Distinguish between hardware interrupt and software interrupt, giving examples b) c) [4 Marks] Discuss the procedures that takes place in checking and servicing of an interrupt

d)

[9 Marks]