

FreeExams.co.ke

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR FIRST YEAR SECOND SEMESTER MAIN EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE MATHEMATICS

COURSE CODE:

MAA 123

COURSE TITLE:

CALCULUS II

DATE: 21/4/2023

TIME: 2:00 PM - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE COMPULSORY (30 MARKS)

- a. Define the terms
 - i. Definite integral
 - ii. Indefinite integral (3 marks)
- b. State the Mean Value Theorem for integrals
- (2 marks) (3 marks)

- c. Use fundamental theorem to evaluate
 - i. $\frac{d}{dx} \int_{0}^{x} \frac{1}{1+t^2} dt$
 - ii. $\int_{0}^{\pi} \cos x \, dx$
- d. Evaluate
 - i. $\int \frac{6x+7}{(x+2)^2} dx$ (4marks)
 - ii. $\int \frac{2x^3 4x^2 x 3}{x^2 2x 3} dx$ (6 marks)
 - iii. $\int_{5}^{6} \frac{2x^2 13x + 13}{(x 4)^3} dx$ (5 marks)
- e. The area enclosed by the curve $y = 2e^{\frac{x}{2}}$, the x-axis and ordinates x = -2 and x = 3 is rotated about the x-axis. Calculate the volume generated. (4 marks)
- f. Evaluate $\int x^2 e^x dx$ (3 marks)

QUESTION TWO (20 MARKS)

- a. Find the average value of $f(x) = 3 \frac{3x}{2}$ on the interval [0,2] and the point at which f takes this value in the domain. (7 marks)
- b. Evaluate $\int e^{ax} \sin bx \ dx$ (7 marks)
- c. Sketch the curve and find the area enclosed by the curve $y=\sin 2x$, the x-axis and the given ordinates $\left(0,\frac{\pi}{2}\right)$ (6 marks)

QUESTION THREE (20 MARKS)

- a. Evaluate $\int \frac{x-8}{x^2-x-2} dx$ (6 marks)
- b. Show that if f is continuous on [a, b], then $F(x) = \int_a^x f(t)dt$ is continuous on [a, b] and differentiable on (a, b) and its derivative is f(x): $\frac{d}{dx}F(x) = \int_a^x f(t)dt = f(x)$ (6 marks)
- c. Find the area bounded by the curves $y = 4 x^2$ and $y = x^2 2x$ (5 marks)
- d. Evaluate $\int x \sin x dx$ (3 marks)

QUESTION FOUR (20 MARKS)

- a. Find the volume of a solid generated by revolving the region bounded by $y = \frac{1}{x^2}$ and the lines x = 2 and y = 4 about the y-axis (6 marks)
- b. Evaluate $\int Cos^5 x Sinx dx$ (6 marks)
- c. Evaluate $\int_{1}^{2} 3e^{4x} dx$ (3 marks)
- d. Evaluate $\int x^2 \ln x dx$ (5 marks)

QUESTION FIVE (20 MARKS)

- a. Compute $\int Sin^4 x dx$ (9 marks)
- b. Evaluate the following integrals
 - i. $\int Cos^5 x \, dx \tag{6 marks}$
 - ii. $\int Cos^2(3x)dx$ (5 marks)