

FreeExams.co.ke

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

SECOND/THIRD YEAR FIRST/SECOND SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND **BACHELOR OF SCIENCE**

COURSE CODE:

MAA311/MAT321/MAA 224

COURSE TITLE: ORDINARY DIFFERENTIAL EQUATIONS I

DATE: 15/08/2023

TIME: 11:00AM-1:00PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE COMPULSORY (30 MARKS)

 Classify each of the following ordinary differential equations by stating their order, degree and linearity.

i.
$$\left(\frac{d^2y}{dx^2}\right)^2 + \left(\frac{d^3y}{dx^3}\right)^{10} + 5y = 5x^7$$

ii.
$$\frac{d^3y}{dx^3} + 4\frac{dy}{dx} = x^2 y^5$$
 (4 marks)

b) Solve
$$(x^3 + 2y)dy + (3x^2y - 6x)dx = 0$$
 (6 marks)

c) Form a differential equation whose general solution is given by the equation

$$y = C_1 x + C_2 x^3 \tag{4 marks}$$

d) Solve the linear differential equation
$$\frac{dy}{dx} + \frac{2x+1}{x}y = e^{-2x}$$
; $y(0) = 1$ (6 marks)

- e) Test for exactness and solve the following ordinary differential equation $(\cos x x \sin x + y^2)dx + 2xy dy = 0$ (5 marks)
- f) Using an appropriate method, solve $\frac{dy}{dx} = \frac{y}{x} + \frac{y^2}{x^2}$ (5 marks)

QUESTION TWO (20 MARKS)

- a) Define the term Wronskian of functions. (2 marks)
- b) Test for homogeneity and solve the following ordinary differential equations

i.
$$(x^3 + y^3)dx - 3xy^2dy = 0$$
 (7 marks)

ii.
$$(x+2y-1)dx + (3x+6y)dy = 0$$
 (6 marks)

c) Solve
$$\frac{d^3y}{dx^3} - 4\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 18y = 0$$
 (5 marks)

QUESTION THREE (20 MARKS)

a) Solve the following ordinary differential equation using the method of integrating factors:

i.
$$(3x^2y^4 + 2xy)dx + (2x^3y^3 - x^2)dy = 0$$
 (7 marks)

ii.
$$\frac{dy}{dx} + \frac{3x+1}{x}y = e^{-3x}$$
 (5 marks)

b) Use the method of variation of parameters to solve

$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = e^{3x} \tag{8 marks}$$

QUESTION FOUR (20 MARKS)

a) A bacteria culture has a population P_0 number of bacteria. At t=1 hours, the number of bacteria is measured to be $\frac{3}{2}p_0$

If the rate of growth is proportional to the number of bacteria P present at time t,

(i) Form a differential equation for this growth

(6 marks)

(ii) Determine the time necessary for the number of bacteria to triple

(6 marks)

b) Use the method of undetermined coefficients to solve $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} - 4y = 3xe^{2x}$ (8 marks)

QUESTION FIVE (20 MARKS)

a) Test for exactness and solve the following ordinary differential equation

$$(ye^{xy} - 2y^3)dx + (xe^{xy} - 6xy^2 - 2y)dy = 0$$
 (7 marks)

b) Solve the following Bernoulli's equation

$$4x^2 \frac{d^2y}{dx^2} + 8x \frac{dy}{dx} + y = 0 ag{5 marks}$$

c) A metal bar at at temperature of $100^{0}c$ is placed in a room at a constant temperature of $0^{0}c$. If after 20 minutes, the temperature of the bar is $50^{0}c$, find the time it will take the bar to reach a temperature of $25^{0}c$. (8 marks)