

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR THIRD YEAR SECOND SEMESTER MAIN EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MAA 326

COURSE TITLE: ODE II

DATE: 19/04/2023 TIME: 9 AM -11 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

- (a) (i) Define the Gamma function (2 mks)
 - (ii) Show that $\Gamma(x-1) = (x-2)\Gamma(x-2)$ (4 mks)
- (b) (i) Find the general solution of a system of differential equation.

$$X^{I} = \begin{pmatrix} -4 & 1 & 1\\ 1 & 5 & -1\\ 0 & 1 & -3 \end{pmatrix} X$$
 (8 mks)

- (ii) Show that the solutions in (i) above are linearly independent (3 mks)
- (c) Use elimination method to solve the system (8 mks)

$$Dx + (D+2)y = 1$$
$$(D-3)x - 2y = t$$

(d) Compute e^{At} given that $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (5 mks)

QUESTION TWO (20 MARKS)

(a) Solve $X^{I} = AX + B(t)$ for

$$A = \begin{bmatrix} 1 & 3 \\ 5 & 3 \end{bmatrix}; B(t) = \begin{bmatrix} 12t - 11 \\ -3 \end{bmatrix}$$
 (10 mks)

(b) Apply Picard's method to solve the following initial value problem up to 3rd approximation

$$\frac{dy}{dx} = x - 3y + 4$$
: $x = 0, y = 3$ (10 mks)

QUESTION THREE (20 MARKS)

(a) Solve the differential equation given that $y = e^x$ is a solution

$$x\frac{d^2y}{dx^2} - (x+1)\frac{dy}{dx} + y = 0$$

(b) Consider the system

(10 Marks)

$$\frac{dx_1}{dt} = -x_1 + x_2$$

$$\frac{dx_2}{dt} = -x_2 + 2x_1 - x_1x_3$$

$$\frac{dx_3}{dt} = -x_3 + x_1x_2$$

Linearize the system

(10 mks)

QUESTION FOUR (20 MARKS)

(a) Define the term Bifurcation

(2 mks)

- (b) Difine the following critical points, in each case draw the phase portrait
 - (i) Spiral

(3 mks)

(ii) Centre

(3 mks)

(iii) Node

- (3 mks)
- (c) Verify that on the interval $(-\infty, \infty)$ $X_1 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} e^t$ and $X_2 = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} e^{3t}$ and

$$X_3 = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} e^{5t} \text{ are fundamental solutions of } X^I = \begin{pmatrix} 3 & -2 & 0 \\ -1 & 3 & -2 \\ 0 & -1 & 3 \end{pmatrix} X \quad (9 \text{ mks})$$

QUESTION FIVE (20 MARKS)

(a) What is the existence of uniqueness theorem of a system of differential equation?

(2 mks)

(b) Replace the equation by a system of first order

$$y^{III} + Py^{II} - Qy^{I} - Ry = 10x (4 mks)$$

(c) Consider the system of differential equations

$$\frac{dx}{dt} = x - 2y + 2z$$

$$\frac{dy}{dt} = -2x + y - 2z$$

$$\frac{dz}{dt} = 2x + z - 2y$$

(i) Find the general solution to the system

(11 mks)

(ii) Find the particular solution given the initial value x(0) = 0,

$$y(-3) = 0, z(0) = 0$$

(3 mks)