

FreeExams.co.ke

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR FORTH YEAR FIRST SEMESTER MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND **BACHELOR OF SCIENCE**

COURSE CODE: MAA 412/MAT 421

COURSE TITLE: PARTIAL DIFFERENTIAL EQUATION I

DATE: 19/04/2023

TIME: 2:00 PM - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

- a) Obtain a first order partial differential equation from $z = x^2 + y^2 + (z a)^2 = b^2$, a and b being constants. (4 marks)
- b) Show that the surfaces

$$F(x, y, z) = x^{2} + 4y^{2} - 4z^{2} - 4 = 0$$

$$G(x, y, z) = x^{2} + y^{2} + z^{2} - 6x - 6y + 2z + 10 = 0$$

Are tangent at the point (2,1,1).

(6 marks)

- c) By direct integration solve $\frac{\partial^2 z}{\partial x \partial y} = x^2 y$; $\frac{z(x,0) = x^2}{z(1,y) = Cosy}$ (6 marks)
- d) Using the method of multipliers, solve: (mz ny)p + (nx lz)q ly + mx = 0. (8 marks)
- e) Solve the Non-linear Partial Differential equation by first expressing it in standard form; $x + y = \frac{P^2 + q^2}{Z^2}$ (7 marks)

QUESTION TWO (20 MARKS)

- a) Consider the Linear Equation of the type $\mathbf{Pp} + \mathbf{Qq} = \mathbf{R}$, where \mathbf{P} , \mathbf{Q} and \mathbf{R} are functions of x, y, z and \mathbf{p} and \mathbf{q} are differential co-efficients. Show that $\mathbf{f}(\mathbf{u}, \mathbf{v}) = 0$ where \mathbf{u} , \mathbf{v} are functions of x, y, z is the required solution. (12 marks)
- b) By direct integration, solve $\frac{\partial^2 z}{\partial y^2} = z$; y = 0 then $z = e^x$, $\frac{\partial z}{\partial y} = e^{-x}$ (8 marks)

QUESTION THREE (20 MARKS)

- a) Use Charpit's method to find the complete integrals of the differential equation $(p^2 + q^2)y = qz$ (10 marks)
- b) Use Jacobi's method to find a complete integral of the equation $p^2x + q^2y = z$. (10 marks)

QUESTION FOUR (20 MARKS)

- a) Solve $2\frac{\partial^2 z}{\partial x^2} + 5\frac{\partial^2 z}{\partial x \partial y} + 2\frac{\partial^2 z}{\partial y^2} = 0.$ (12 marks)
- b) By eliminating arbitrary functions, obtain the partial differential equation from: z = f(x + ct) + g(x - ct).(8 marks)

QUESTION FIVE (20 MARKS)

- a) Find the general solution of the Lagrange equation $x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = (x + y)z$. (10)
- marks)
 b) Using an appropriate method, solve the Partial Differential Equation $2(z + xp + yq) = yp^2. \tag{10 marks}$