

FreeExams.co.ke

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR FIRST YEAR SECOND SEMESTER MAIN EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE: MAP 121

COURSE TITLE: ALGEBRAIC STRUCTURES I

DATE: 25/4/2023 TIME: 2:00 PM - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE COMPULSORY (30 MARKS)

a)	Define the following		
	i.	Binary operation	(2marks)
	ii.	Group	(4marks)
	iii.	Composition of functions	(2marks)
b)	Prove that the identity element of a group is always unique		(4marks)
c)	Describe the Dihedral group D_5		
d)	Let G be a group and $H ext{ } ext{ } ext{G}$ prove that the set G/H forms a group		
	State four examples of groups		(4marks)
QUESTION TWO (20 MARKS)			
a)	Define the following		
	i.	Subgroup	(3marks)
	ii.	Klein-four group	(2marks)
	iii.	Alternating group	(2marks)
b)	State the properties of a ring		
c)	State the distinct left cosets of $\langle 4 \rangle$ in \mathbb{Z}_{12}		
d)	Prove that a f	inite group G whose order is a prime p is cyclic	(5marks)
QUESTION THREE (20 MARKS)			
a)	Define the following		
	i.	Ring	(5marks)
	ii.	Normal subgroup	(2marks)
	iii.	Quarternion group	(2marks)
b)	Given the set	$S_3 \ge < (13) >$, state the distinct cosets of $< (13) > \text{in } S_3$	(5marks)
c)	Prove that every subgroup of an abelian group is normal		
d)	State the properties of a Field		

QUESTION FOUR (20 MARKS)

a) Find the inverse of the following matrix, whose entries are elements of Z_6 (6marks)

$$A = \begin{bmatrix} 1 & 2 \\ 5 & 5 \end{bmatrix}$$

b) State the Lagrange's theorem

(2marks)

c) Construct the Cayley table for the Klein-4 group and prove its abelian

(8marks)

d) State 4 examples of binary operations

(4marks)

QUESTION FIVE (20 MARKS)

a) Define the following terms

i. Abelian group

(2marks)

ii. Proper subgroup

(2marks)

iii. Cyclic group

(2marks)

iv. Range of a function

(2marks)

b) Discuss the symmetric group S_3 and give its subgroups and prove if it satisfies the Lagrange's theorem (12marks)