

FreeExams.co.ke

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR SECOND YEAR

SPECIAL/SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS)

COURSE CODE: MAP 221

COURSE TITLE: LINEAR ALGEBRA II

DATE: 10/8/2023

TIME: 8:00 AM - 10:00 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

a) Find general quadratic form of

$$E = \begin{pmatrix} -2 & 1 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$
 (5 Marks)

b) Find the characteristic equations of

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
Are they similar? Explain (10 Marks)

Find the matrix representation of the linear map $F: IR^3 - IR^2$ defined by F(x,y,z) = (2x + 3y - z, 4x - y + 2z) relative to the basis of IR^3 and IR^2 respectively

$$B_1 = \mu_1 = (1,1,0), \ \mu_2 = (1,2,3), \ \mu_3 = (1,3,5)$$

$$B_2 = \nu_1 = (1,2), \ \nu_2 = (2,3), \tag{15 Marks}$$

Question Two (20 Marks)

a) Find the eigenspaces of the matrix (12 Marks)

Question Three (20 Marks)

Let
$$S = \{\mu_1 = (1,2,0) \mid \mu_2 = (1,3,2) \text{ and } \mu_3 = (0,1,3) \}$$

$$S = \{v_1 = (1,2,1) \mid v_2 = (0,1,2) \mid v_3 = (1,4,6) \}$$

- i) Find the change of basis matrix P from S to S^1 (8 Marks)
- ii) Find the change of basis matrix Q from S¹ bank to S (8 Marks)
- iii) Verify that $Q = P^{-1}$ (4 Marks)

Question Four (20 Marks)

a) Find the matrix representation of the linear mapping $F: IR^3 - IR^2$ defined by F(v) = Av relative to the bases

$$B_1 = -\mu_1 = (1,1,1) \ \mu_2 = (1,1,0) \ \mu_3 = (1,0,0)$$

$$B_2 = -v_1 = (1,3) v_2 = (2,5)$$

(12 Marks)

b) Find the matrix representation of the linear operator S:IR² defined by S(x,y) = (2y, 3x - y) relative to the basis

$$B = v_1 = (1,3) v_2 = (2,5)$$

(8 Marks)

Question five (20 Marks)

a) Find the general quadratic form of

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

(4 Marks)

b) Show that
$$A = \begin{pmatrix} 4 & 2 & 0 \\ 2 & 9 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 is positive

(6 Marks)

c) If $u = (x_1, y_1, z_1)$ and $v = (x_2, y_2, z_2)$ are two vectors in IR³, define their inner product.

(5 Marks)

d) Let the set S of vectors in IR³:

$$S = \mu_1 = (1,2,1)$$
 $\mu_2 = (2,1,-4)$ $\mu_3 = (3,-2,1)$

Normalize S to obtain an orthonormal basis of IR³

(5 Marks)