

FreeExams.co.ke

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR THIRD YEAR SECOND SEMESTER SUPPLEMENTARY/SPECIAL EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN **MATHEMATICS**

COURSE CODE:

MAP 322

COURSE TITLE: GROUP THEORY II

DATE: 15/08/23

TIME: 2:00 PM - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question ONE and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30MARKS)

a.	Define the following	(2marks)	
	i. Conjugacy class	(2marks)	
	ii. Centralizer	(2marks)	
	iii. P-groups		
	iv. Sylow p-subgroup	(2marks)	
b.	Show that every nilpotent group is solvable	(4 marks)	
C.	Show that if H is a proper subgroup of a nilpotent group G, then H is a proper subgroup		
	of $N_G(H)$	(10marks)	
d.	Show that all finite abelian groups are soluble	(8 marks)	
QUES	STION TWO (20MARKS)		
a.	Define the following sets	(2marks)	
	i. Upper central series	(2 marks)	
	ii. Nilpotent group		
	iii. Central series	(2marks)	
b.	Show that if G is the internal direct product of H and K, then G is isomorph	ne to the	
	external direct product H×K	(9marks)	
c.	Show that if G is a group, G acts on itself by conjugation: $g*x=gxg^{-1}$ for g	, xe G	
		(5marks)	
Q	UESTION THREE (20MARKS)		
a.	State the following theorems	(2moules)	
	i. Cauchy theorem	(2marks)	
	ii. Sylow's first theorem	(2marks)	
	iii Sylow's second theorem	(2 marks)	
b.	is a light group is isomorphic to z or z for some n.	(7marks)	
c.	gi di Fraita aroun G has a composition series	(7marks)	

QUESTION FOUR (20MARKS)

a.	Defin	e the following	(2 -1-)
	i	Maximal normal subgroup	(2marks)
			(3marks)
	11.	Composition series	(Qmarke)
b.	Show that every p-subgroup of G is contained in some sylow p- subgroup of G. (8marks		
300.0	T	be prime, show that the center of a nontrivial finite p-group is nontrivial	(7marks)
C	Let p	be prime, show that the center of a nontrivial finite p-group is noterious	

QUESTION FIVE (20MARKS)

a. Define the following

	i. External direct product	(2marks)	
	ii. Internal direct product	(2marks)	
b.	b. State the Jordan – holder theorem	(6marks)	
c.	e. Let p be prime. Show that the order of a finite p-grou	up is pn for some $n > 0$ (5marks)	
d.	Show that a Sylow p-subgroup of G is unique if and only if it is normal in G. In particular		
	it is unique if the group is abelian.	(5 marks)	