

UNIVERSITY EXAMINATIONS **2022/2023 ACADEMIC YEAR** THIRD YEAR SECOND SEMESTER MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE

COURSE CODE:

MAP 323

COURSE TITLE: RING THEORY

DATE:

28/04/2023

TIME: 9 AM-11 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

- a) Explain the meaning of the following terms as used in ring theory (2mks @)
 - Euclidean Domain i)
 - Integral domain ii)
 - Principal Ideal Domain
 - A Boolean ring iv)
- b) Determine whether or not the following polynomials are irreducible over Z_5
 - (2 mks) $f(x) = x^3 + 2x^2 - 3x + 4$ (2 mks)
- $g(x) = x^2 + 3x + 4$ ii) c) Show that a Boolean ring \mathcal{B} , $x^2 = x$ for each $x \in \mathcal{B}$ implies 2x = 0 (4 mks)
- d) Let x be a non zero element of a ring R with unity. Suppose there exists a unique (6 mks) $y \in \mathbb{R}$ such that xyz = x, show that xy = 1 = yx.
- (8marks) e) State and proof the Euler's Theorem

QUESTION TWO (20 MARKS)

- a) Let R be a commutative ring with identity.
 - Show that if ean idempotent element of is R, then 1 e is also idempotent. i) (6 mks)
 - ii) Show that if e is an idempotent element of R then $R \cong Re \oplus R(1 e)$ (14 mks)

QUESTION THREE (20 MARKS)

- a) Let R be the ring of real numbers with unity, and let R[x] be the polynomial ring over R. Let $J = (x^2 + 1)$ be the ideal in R[x] consisting of the multiples of $x^2 + 1$. Show that the (12 mks) quotient R[x]/I is the field of complex numbers.
- b) Let $f: R \to S$ be a homomorphism of the ring R into a ring S. Show that the set (8 mks) ${f(a)|a\in R}$ is a subring of R

QUESTION FOUR (20 MARKS)

a) Find q(r) and r(x) in $Z_5[x]$ if $g(x) = 2x^3 + 3x^2 + 4x + 1$ is divided by (8 mks) f(x) = 3x + 1.

- b) Determine the idempotents, nilpotent elements and the units of the ring of integers modulo $10 (Z_{10})$ (6 mks)
- c) Find all cyclic subgroups of the group of units of the ring of integers modulo 24 (Z_{24}) (6 mks)

QUESTION FIVE (20 MARKS)

- a) Show that the ring of Gaussian integers $R = \{m + n\sqrt{-1} \mid m, n \in Z\}$ is a Euclidean ring if we set $\phi(m + n\sqrt{-1}) = m^2 + n^2$ (12 mks)
- b) Let A and B be ideals in R such that $B \subseteq A$. Show that $R / A \cong (R / B) / (A / B)$ (8 mks)