

FreeExams.co.ke

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR THIRD YEAR SECOND SEMESTER MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION (SCIENCE)

COURSE CODE:

MAP 324

COURSE TITLE:

GROUP THEORY

DATE:

21/04/23

TIME: 9 AM -11 AM

INSTRUCTIONS TO CANDIDATES

Answer Question ONE and Any TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30MARKS)

a. Define the following (2 marks) Trivial subgroups (2 marks) Proper subgroup ii. (3 marks) Group iii. b. Let G be a group. State three conditions under which a subset H is a subgroup of G (3 marks) (4 marks) Let G be a group and $a,b \in G$. Show that $(a.b)^{-1} = b^{-1}a^{-1}$ d. Let G be a group, suppose $x \in G$. Show that x has exactly one inverse x'(5 marks) e. Show that every permutation can be expressed as a product of transpositions (4 marks) (2 marks) f. Compose the permutation (1234)*(13)(24) in cycle notations g. Represent the permutation (13584)(2967) \in S₉ as a product of transpositions (2marks) (3marks) h. Describe in detail the word "transposition" QUESTION TWO (20MARKS) a. Define the following (2marks) Isomorphism i. (2marks) Automorphism b. Let $\varphi: G \to H$ be a homomorphism and let e, e' denote the identity elements of G and H respectively. Show that (2marks) $\varphi(e) = e^{/}$ i. (2 marks) $\varphi(a^{-1}) = \varphi(a)^{-1}$ ii. (2marks) $\varphi(a^n) = \varphi(a)^n$ for all $a \in G$, $n \in Z$ (10 marks) c. Show that φ is a monomorphism if and only if ker $\varphi = \{e\}$. QUESTION THREE (20MARKS) a. Define the following (2marks) Center of a group i. (2marks) Homomorphism b. Let $K = Ker(\phi)$. Define i: $G/K \longrightarrow im(\phi)$ where i: $gK \longrightarrow \phi(g)$. Show that (6 marks) i is well defined i. (3 marks) i is a homomorphism ii. (2 marks) i is surjective iii. (5 marks)

i is injective

iv.

QUESTION FOUR (20MARKS)

a. Define the following

i. Right Coset (2 marks)
ii. An index of a subgroup

ii. An index of a subgroup
b. Let H be the subgroup of S₃ defined by the permutations {(1), (123), (132)}. Find the left cosets of H.

c. Let H be a subgroup of a group G. Show that the group G is the disjoint union of the left cosets of H in G. (8marks)

QUESTION FIVE (20MARKS)

a. Define the following

i. Normal subgroup (2marks)

ii. Factor group (2marks)

b. Let G be a group and N a subgroup of G. Show that the following statements are equivalent;

i. The subgroup N is normal in G

ii. For all $g \in G$, $gNg^{-1} \subset N$

iii. For all $g \in G$, $gNg^{-1} = N$ (11marks)

c. Let N be a normal subgroup of a group G. Show that the cosets of N in G forms a group G/N of order [G: N] (5 marks)