

FreeExams.co.ke

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR FIRST YEAR SECOND SEMESTER MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY

COURSE CODE: MAT 121

COURSE TITLE: LINEAR ALGEBRA I

DATE: 12/4/2023

TIME: 2:00 PM - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE COMPULSORY (30 MARKS)

- a) Answer the following as either True or False, and justify your answer If A and B are 2×2 matrices such that $\det(A)=-2$ and $\det(B)=8$, then $\det(2A^Tadj(B^{-1}))=1 \tag{4marks}$
- b) Verify that the triangle with vertices A(1, 1, 2), B(1, 2, 3), and C(3, 0, 3) is a right angled triangle. (5marks)
- c) Find the angle between X=(0,1,1,0) and Y=(1,1,0,0) (4marks)
- d) Let $A^{-1} = \begin{bmatrix} 0 & 4 & 4 & 0 \\ 1 & 1 & 2 & 0 \\ 1 & 3 & 5 & 3 \\ 0 & 1 & 2 & 6 \end{bmatrix}$, find det(A) (6marks)
- e) Find all $x, y \in \mathbb{R}$ such that the vectors U = (x, 1, 3) and V = (4, x + y, 9) are parallel. (4marks)
- f) Show that if \mathbf{x} and \mathbf{y} are orthogonal unit vectors in \mathbb{R}^n , then ||4x + 3y|| = 5. (4marks
- g) Let X and Y be vectors in \mathbb{R}^n , such that ||X|| = ||Y||. Show that X + Y and X Y are orthogonal vectors. (3marks)

QUESTION TWO (20 MARKS)

- a) Let $A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$. Find
 i. Coef(A) (14marks)
 - ii. det(adj(A))iii. $A^2adj(A)$
- b) Given the set $S = \{1,2,3\}$, state the inversions and the signs of its permutations (6marks)

QUESTION THREE (20 MARKS)

- a) List 5 properties of matrix determinant (5marks)
- b) Let $det A = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = -4$, and $B = \begin{bmatrix} 2a_3 & 2a_2 & 2a_1 \\ b_3 a_3 & b_2 a_2 & b_1 a_1 \\ c_3 + 3b_3 & c_2 + 3b_2 & c_1 + 3b_1 \end{bmatrix}$, evaluate |B| (6 marks
- c) Evaluate the determinant of the matrix A via reduction to triangular form where
 - $A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 3 & 1 \\ -1 & 3 & 1 \end{bmatrix}$ (5marks)
- d) Show that if \mathbf{x} and \mathbf{y} are in \mathbb{R}^n , then $\|x + y\| \le \|x\| + \|y\|$ (4marks)

QUESTION FOUR (20 MARKS)

a) Let A be a non-singular 4×4 matrix with $|A^{-1}| = 3$. Find

i.
$$|\operatorname{adj}(A)|$$
 (4marks)
ii. $|\frac{1}{2}A^TAdj(A^{-1})|$ (4marks)

b) Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ -1 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} -2 & 3 & 4 \\ 3 & 2 & 1 \end{bmatrix}$. Find the columns of AB as a linear combination of columns of A

combination of columns of A (6marks)

c) Solve the following linear system using Gauss Jordan method (6marks)

$$x +3y -z +w = 1$$

 $2x -y -2z +2w = 2$
 $3x +y -z +w = 1$

QUESTION FIVE (20 MARKS)

a) Find the matrix A satisfying $\begin{pmatrix} 2A^T - 3 \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} \end{pmatrix}^T = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$ (6marks)

b) Find a vector X, of length 4, in the opposite direction of Y = (2, 2, -1). (5marks)

c) Let
$$A = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 3 & 0 \\ 1 & 1 & -1 \end{bmatrix}$ (9marks)

i. Find B^{-1}

ii. Find C if A = BC