

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER SPECIAL/SUPPLEMENTARY EXAMINATIONS

FOR THE DEGREE OF B.ED (SCIENCE) AND BSC (PHYSICS)

COURSE CODE:

SPH 316/SPC 314

COURSE TITLE: ATOMIC PHYSICS

DATE: 16/8/2023

TIME: 2:00-4:00PM

INSTRUCTIONS TO CANDIDATES

TIME: 2 HOURS

Answer question ONE and any TWO of the remaining

b)	Bohr's atomic model	[5 marks]
c)	Sommerfeld-Wilson atomic models	[5 marks]
d)	Vector atomic model	[5 marks]

QUESTION FOUR [20 MARKS]

An accelerator supplies a proton beam of 10¹² particles per second and 2000MeV/c momentum.

This beam passes through 0.01 cm aluminium window.

$$[A_v = 6.02x10^{23}, m_e = 9.11x10^{-31}kg, \ Z = 13, A = 27, \rho = 2.7g/cm^3, x_0 = 24g/cm^3]$$

a) Obtain an expression for Rutherford's scattering in cm/sr. [4 marks]

b) Compute the differential Rutherford scattering cross section in cm/sr at 30° [4 marks]

c) How many protons per second will enter a 1cm radius circular counter at distance [3 marks] of 2m and at an angle of 30° with the beam direction?

d) Compute the integrated Rutherford scattering cross section for angles greater than 50 [4 marks]

e) How many protons per second are scattered out of the beam in angles greater than 5°? [2 marks]

f) Compute the rms Coulomb scattering angle for the proton beam (take 15 MeV) [3 marks]

QUESTION FIVE [20 MARKS]

- a) Calculate the following the magnitude of orbital, spin and total angular momenta and also the angles between l and s for p electron in a one electron atom. [8 marks]
- b) Show that for a one electron atom the term separation of spin-orbit doublet is given by $\Delta T = 5.84 \frac{Z^4}{n^{3l(l+1)}}$. Explain the meaning of each term.

QUESTION ONE [30 MARKS]

Explain the following atomic models a) Rutherford's atomic model

a)	Define the following terms:	[4 marks]	
a)	Hund's rules, Compton wavelength, Blackbody and stopping potential.		
b)	Calculate the hyperfine splitting in hydrogen in a ground state.	[3 marks]	
c)	Obtain an expression of the average speed of an electron in first Bohr orbit of an	[3 marks]	
	atom of atomic number Z.		
d)	What is the magnetic moment of an atom in the state ${}^{3}P_{0}$?	[3 marks]	
e)	Couple a p-state and an s-state via j-j coupling.	[3 marks]	
f)	What is Lande's g-factor? Find the Lande's g-factor of the state ² p _{3/2} .	[4 marks]	
g)	State Moseley's law hence find wavelength K_{α} line in cobalt	[4 marks]	
h)	$[Z = 27 \text{ and } R = 1.097x10^7 m^{-1}]$ Compute the separation of the outer lines, two lines of a normal Zeeman pattern for spectral lines of wavelength 612nm in a magnetic field of 10kg.	[3 marks]	
i)	[1 $g = 10^{-4}T$, $e = 1.602x10^{-19}C$, $m_e = 9.11x10^{-31}kg$ and $c = 3.0x10^8m/s$] State any three experiments that lead to the development of atomic physics.	[3 marks]	
QUESTION TWO [20 MARKS]			
a)	Describe an experimental arrangement for determining the characteristic lines in	[8 marks]	
	an X-ray spectrum.	12.12	
b)		[4 marks]	
	able to assign an atomic number Z to each of the elements. Explain explicitly		
	how this assignment can be made.		
c)		[4 marks]	
	as absorption lines in the same material. Explain why, for example, the K_{α} lines		
	cannot be observed in the absorption spectra of heavy elements.	[41]	
d)		[4 marks]	
	bombarded by electrons if given energy. What feature of the spectrum is		
	inconsistent with classical electromagnetic theory?		
Q	UESTION THREE [20 MARKS]		

[5 marks]