

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER SPECIAL/SUPPLEMENTARY EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE (PHYSICS)

COURSE CODE:

SPC 321

COURSE TITLE: QUANTUM MECHANICS I

DATE: 10/8/2023

TIME: 8:00-10:00AM

INSTRUCTIONS TO CANDIDATES

TIME: 2 HOURS

Answer question ONE and any TWO of the remaining

QUESTION ONE [30 MARKS]

- a) Prove that if the commutator $[\hat{A}, \hat{B}] = 1$ then:- $[\hat{A}, \hat{B}^2] = 2\hat{B}$. [3 marks]
- b) If the operator $\frac{d^2}{dx^2}$ operates on the wave function $\psi = A \cos nx$ find the corresponding eigen value.
- c) The state of a free particle is described by the following wave function:- [4 marks]

$$\psi(x) = \begin{cases} 0 \text{ for } x < -3a \\ C \text{ for } -3a < x < a \\ 0 \text{ for } x > a \end{cases}$$

Find C and the probability of finding the particle in interval [0, a].

- d) A particle moving in x-axis has a wave function given by: $\psi(x) = \begin{cases} ax & 0 \le x \le 1 \\ 0 & elsewhere \end{cases} \text{ find } \langle x \rangle$
- e) The one- dimensional time-independent Schrödinger equation is given by $\left(-\frac{h^2}{2m}\right)\left(\frac{d^2\psi(x)}{dx^2}\right) + V(x)\psi(x) = E\psi(x)$ give the meaning of the symbols in this equation.
- f) Given that: $J_x = \left(\frac{\hbar}{2mi}\right) \left[\psi^* \frac{d\psi}{dx} \left(\frac{d\psi}{dx}\right) \psi^*\right]$, show that $J_x = \left(\frac{\hbar k}{m}\right) (A^2 B^2)$ [6 marks] if $\psi = Ae^{ikx} + Be^{-ikx}$.
- g) Consider a one-dimensional particle which is confined in a region 0 < x < a [4 marks] whose wave function is $\psi(x,t) = \sin\left(\frac{\pi x}{a}\right) \exp(-i\omega t)$. Find the potential energy V(x) of the region.
- energy V(x) of the region. h) Show that $i[\hat{A}, \hat{B}]$ will be Hermitian if \hat{A} and \hat{B} are Hermitian operators. [3 marks]

QUESTION TWO [20 MARKS]

- a) What boundary conditions do wave functions obey? [2 marks]
- (b) A particle confined to a one dimensional potential well has a wave function given by:-

$$\psi(x) = \begin{cases} 0 & for \ x < -L/2 \\ Acos\left(\frac{3\pi x}{L}\right) for \ -L/2 \le x \le L/2 \\ 0 & for \ x > L/2 \end{cases}$$

- (i) Sketch the wave function $\psi(x) \approx \cos\left(\frac{3\pi x}{L}\right)$ [3 marks]
- (ii) Calculate the normalization constant A [5 marks]
- (iii) Calculate the probability of finding the particle in the interval $-L/4 \le x \le L/4$ [5 marks]
- (iv) Using the Schrödinger equation $\left(-\frac{\hbar^2}{2m}\right)\left(\frac{d^2\psi}{dx^2}\right) = E\psi$ show that the energy E corresponding to this wave function is given by: $\frac{9\pi^2\hbar^2}{2mL^2}$.

QUESTION THREE [20 MARKS]

A particle moving in one dimension is in a stationary state whose wave function is given by:-

$$\psi(x) = \begin{cases} 0 & for \ x > -a \\ A\left(1 + \cos\frac{\pi x}{a}\right) for - a \le x \le a \\ 0 & for \ x > a \end{cases}$$

- a) Find the magnitude of A so that $\psi(x)$ is normalized. [5 marks]
- b) Evaluate Δx and Δp hence verify that $\Delta x \Delta p \ge \frac{h}{2}$. [15 marks]

QUESTION FOUR [20 MARKS]

A particle of mass m, moves freely inside an infinite potential well of length a, has an initial wave function given by:-

$$\psi(x,0) = \frac{A}{\sqrt{a}} \sin\left(\frac{\pi x}{a}\right) + \sqrt{\frac{3}{5a}} \sin\left(\frac{3\pi x}{a}\right) + \frac{1}{\sqrt{5a}} \sin\left(\frac{5\pi x}{a}\right) \text{ where A and a are real constants, a=2 and } \phi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right).$$

- a) Find A so that $\psi(x, 0)$ is normalized [4 marks]
- b) What are the values of measurements of energy and their corresponding probabilities? [7 marks]
- c) Calculate the average energy. [3 marks]
- d) Find the wave function $\psi(x, t)$ at any later time t. [3 marks]
- e) Determine the probability of finding the system at any later time t in state $\varphi(x,t) = \sqrt{\frac{2}{a}} \sin\left(\frac{5\pi x}{a}\right) e^{-iE_5 t/\hbar}.$ [3 marks]

QUESTION FIVE [20 MARKS]

a) The wave function of a hydrogen atom is given by:- $\psi = \frac{1}{\sqrt{\pi a^3}} e^{-r/a}$, find $\langle r \rangle$ [6 marks] and $\langle r^2 \rangle$ for an electron in the ground state express your answer in terms of Bohr's radius (a)

- b) Find $\langle x \rangle$ and $\langle x^2 \rangle$ for an electron in the ground state of a hydrogen atom if $r^2 = x^2 + y^2 + z^2$. [2 marks]
- c) Find $\langle x^2 \rangle$ in the state n = 2, l = 1 and m = 1 if $x = r \sin \theta \cos \phi$ [6 marks]
- d) Find the probability that an electron in the ground state of a hydrogen atom will be found inside the nucleus? [6 marks]