

## FreeExams.co.ke

## UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

## FOURTH YEAR FIRST SEMESTER SUPPLEMENTARY/SPECIAL EXAMINATIONS

FOR THE DEGREE IN BSC (PHYSICS)

COURSE CODE: SPC 411

COURSE TITLE: QUANTUM MECHANICS II

**DATE**: 16/11/2022 **TIME**: 2:00PM-4:00PM

INSTRUCTIONS TO CANDIDATES

TIME: 2 HOURS

Answer question ONE and any TWO of the remaining

**QUESTION ONE [30 MARKS]** 

- Show that  $(\sigma. A)(\sigma. B) = A.B + i\sigma(AxB)$  where A and B are vectors and [5 marks]  $\sigma$ 's are Pauli's matrices
- b) Find the Eigen function of the operator:  $\hat{L}_x = -i\hbar \frac{d}{d\varphi}$ . [5 marks]
- A particle of mass m is trapped in a potential well of:- $V = \frac{1}{2}m\omega^2x^2$ . Use variational method with the normalized trial wave function of:- $(1/\sqrt{a})\cos(\pi x/2a)$  in the limits -a < x < a, find the best value of a.
- d) The first Born approximation for elastic scattering amplitude is:-f = [5 marks]  $\left(\frac{2\mu}{q\hbar^2}\right)\int V(r)e^{iq\cdot r}d^3r$  show that V(r) is spherically symmetric and it reduces to:- $f = -\left(\frac{2\mu}{q\hbar^2}\right)\int r\sin(qr)V(r)dr$ .
- e) Show that:-  $[\hat{L}^2, \hat{L}_x]\psi = 0$  [5 marks]
- f) Calculate the scattering angle in laboratory frame of reference between two [5 marks] photons if it is 15<sup>0</sup> in the centre of mass frame.

**QUESTION TWO [20 MARKS]** 

- a) For Pauli's spin matrices  $\sigma_x$ ,  $\sigma_y$  and  $\sigma_z$  obtain the commutators:-  $[\sigma_x, \sigma_y]$ , [15 marks]  $[\sigma_x, \sigma_z]$  and  $[\sigma_y, \sigma_z]$
- e) Use WKB approximation to find the allowed energies of the general power law potential  $V(x) = \alpha |x|^{\nu}$  where  $\nu = 2$  and it's a positive number. [5 marks]

**QUESTION THREE [20 MARKS]** 

- a) An electron is in spinor state  $\chi = A \begin{bmatrix} 3i \\ 4 \end{bmatrix}$  hence:
  - i) Determine the normalization constant A. [2 marks]
  - ii) Find the expectation values  $\langle S_x \rangle$ ,  $\langle S_y \rangle$  and  $\langle S_z \rangle$ . [6 marks]
  - iii) Find the uncertainties  $\sigma_{S_x}^2$ ,  $\sigma_{S_y}^2$  and  $\sigma_{S_z}^2$ . [6 marks]

For a harmonic oscillator  $V(x) = \frac{1}{2}kx^2$ , the allowed energies are [6 marks] b)  $E_n = (n + 1/2)\hbar\omega, (n = 0,1,2,...)$ , where  $\omega = \sqrt{k/m}$ . Now suppose

 $E_n = (n + 1/2)\hbar\omega, (n = 0,1,2,...)$ , where  $\omega = \sqrt{k/m}$ . Now suppose the spring constant increases slightly by  $k \to (1 + \epsilon)k$ . Find the exact energies, trivial in this case. Expand your power series in  $\epsilon$ , up to second order.

QUESTION FOUR [20 MARKS]

Show that in spherical coordinates the angular momentum operator is given by:  $-\hat{L}_x = -i\hbar[-\sin\phi\frac{\partial}{\partial\theta} - \cot\theta\cot\phi\frac{\partial}{\partial\phi}]$ .

**QUESTION FIVE [20 MARKS]** 

a) Find the energy levels and wave functions of a system of four distinguishable spinless particles placed in a an infinite potential well of

- size a. use this result to infer the energy and the wave function of the ground state and the first excited state
- [12 marks] Find the ground state energy and wave function of a system of Ninteracting identical particles that are confined to a one dimensional b) infinite well when the particles are bosons and spin  $\frac{1}{2}$  fermions.