

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER **MAIN EXAMINATIONS**

FOR THE DEGREE OF MASTERS IN SCIENCE (PHYSICS)

COURSE CODE:

SPH 817

COURSE TITLE: NUCLEAR AND PARTICLE PHYSICS

DATE: 26/04/2023

TIME: 9:00-11:00AM

INSTRUCTIONS TO CANDIDATES

TIME: 2 HOURS

Answer any THREE questions

QUESTION ONE [30 MARKS]

a) Differentiate between the following terms-:

[4 marks]

- (i) Nuclear fusion and nuclear fission
 - (ii) Pick up and stripping off nuclear reaction processes.
- Using the semi empirical mass formula of the liquid drop nuclear model, show that the most stable isobar for a given odd A is given by:- $Z = \frac{A}{2 + 0.0015A^{2/3}}$
 - $[b_3 = 0.58 MeV, b_4 = 19.3 MeV]$
- c) Calculate the nuclear binding energy of $\binom{238}{92}U$. [3 marks] $[m_p = 1.007825, m_n = 1.008665u \text{ of mass of } \frac{238}{92}U = 238.05076u]$
- d) A beam of protons moves through a material whose refractive index is 1.8. [3 marks] Cerenkov light is emitted at an angle of 11⁰ to the beam. Find the kinetic energy of the protons in MHz.
- e) Find the probability that the neutron- proton separation in deuteron exceeds [3 marks] 2fm in the range $0 \le r \le \infty$. Use the trial wave function $\psi = \sqrt{2k} exp(-kr)$ [k = 0.232fm]
- In Fermi gas nuclear model, using the thermodynamic relation $P = -\frac{\partial U}{\partial V}$ show that the pressure inside the nucleus is given by $\frac{2}{5}\rho_n E_F$ where ρ_n is the neutron density.
- h) The neutron separation energy of ${}_{2}^{4}He$ is 1.77MeV, find its nuclear binding energy. [3 marks]
- i) Calculate the magnetic field of a cyclotron which will accelerate protons at a radio frequency of 8MHz [$q = 1.6x10^{-19}C$, $m_p = 1.66x10^{-27}kg$]
- j) A nuclear fission process is given by:- $^{235}_{92}U + ^{1}_{0}n \rightarrow ^{141}_{56}Ba + ^{92}_{36}Kr + 3^{1}_{0}n + Q$. [3 marks] Calculate the energy Q released during the process. [mass of $^{235}_{92}U = 235.04278u$, $m_n = 1.008665u$, mass of $^{141}_{56}Ba = 1409192u$ and mass of $^{92}_{36}Kr = 91.81719u$]
- k) Consider elastic scattering of 50 MeV neutrons from a nucleus. The phase shifts measured in an experiment are $\delta_0 = 96^{\circ}$, $\delta_1 = 72^{\circ}$, $\delta_2 = 60^{\circ}$, $\delta_3 = 35^{\circ}$, $\delta_4 = 18^{\circ}$ and $\delta_5 = 5^{\circ}$ where $\delta_l = 0$ for $l \ge 6$. Find the total cross section
- l) Indicate with an explanation whether the following interactions proceed through strong, electromagnetic or weak interactions. [2 marks]
- i) $\pi^- \rightarrow \mu^- + \bar{v}_p$

ii)
$$\Sigma^0 \rightarrow \Lambda + \gamma$$

iii)
$$\pi^- + p \rightarrow K^0 + \Sigma^0$$

iv)
$$e^+ + e^- \rightarrow \mu^+ + \mu^-$$

QUESTION TWO [15 MARKS]

Explain in detail any two nuclear models

[15 marks]

QUESTION THREE [15 MARKS]

Discuss the properties of the nucleus under the subheadings:-

L

(i) Its size, mass, volume and density.

[4 marks]

(ii) Its composition

[3 marks]

(iii) Its binding energy(iv) Nuclear forces

[5 marks]

QUESTION FOUR [15 MARKS]

In detail discuss and classify elementary particles

[15 marks]

QUESTION FIVE [15 MARKS]

a) For protons in nucleus, if the charge is uniformly spherically distributed. Obtain an expression for the Coulomb electrostatic energy of the nucleus.

[9 marks]

b) Calculate the radius and Coulomb energy of $\binom{73}{32}Ge$)

 $[r_0 = 1.4fm]$

[6 marks]