

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE MASTERS OF SCIENCE (PHYSICS)

COURSE CODE:

SPH 821

COURSE TITLE:

ELASTIC & THERMAL PROPERTIES OF SOLIDS

DURATION: 2 HOURS

DATE: 25/04/2023

TIME: 9:00-11:00AM

INSTRUCTIONS TO CANDIDATES

Answer any three Questions

Indicate answered questions on the front cover.

Start every question on a new page and make sure question's number is written on each page This paper consists of 3 printed pages. Please Turn Over

QUESTION ONE [20 Marks]

a) Define the term cohesive energy of a molecule

[2 Marks]

b) The potential energy of a system of two atoms is given by the relation;

$$U = -A/r^2 + B/r^{10}$$

A stable molecule is formed with the release of 8eV energy when the interatomic distance is 2.8 Å. Find A and B and the force needed to dissociate this molecule into atoms and the interatomic distance at which the dissociation occurs [12 Marks]

c) The potential energy U of a system of two atoms varies as a function of their distance of separation r as;

$$U = \frac{-A}{r^n} + \frac{B}{r^n}$$

Show that equilibrium:

- i) $r = r_0 = \left(\frac{m_B}{nA}\right)^{1/m-n}$ [2Marks]
- ii) the energy of attraction is m/n times the energy of repulsion and [2 Marks]
- iii) the bond energy is; $U_0 = \frac{A}{r_0^n} \left(\frac{m-n}{m} \right)$

QUESTION TWO [20 Marks]

a) Explain why steel is more elastic than rubber

[2 Marks]

[2 Marks]

b) Differentiate between plastic and elastic behavior of materials

[2 Marks]

c) Explain the molecular theory of elasticity

[3 Marks]

d) Using clearly labeled diagrams, discuss the various types of stress and strain

[6 Marks]

e) Calculate the maximum length of a steel wire that can be suspended without breaking under its own weight, if its breaking stress = $4.0 \times 10^8 \text{Nm}^{-2}$, density = $7.9 \times 10^3 \text{kg m}^{-3}$ and g= 9.80 ms^{-2}

[3 Marks]

f) A 10 kg mass is attached to one end of a copper wire of length 5m long and 1 mm in diameter. Calculate the extension and lateral strain, if Poisson's ratio is 0.25. Given Young's modulus of the wire = $11 \times 10^{10} \text{N m}^{-2}$ [4 Marks]

QUESTION THREE [20 Marks]

a) Show that the strain energy stored in an elastic body per unit volume of the material, which is also called strain-energy density is given by;

$$U_0 = \frac{1}{2}\sigma_x \varepsilon_x$$
 [4 Marks]

b) Given the following principal stresses at a point in a stressed material.

$$\sigma_x=200N/mm^2,\,\sigma_y=150N/mm^2,\,\sigma_z=120N/mm^2$$
 Taking;

 $E = 210kN/mm^2$ and v = 0.3. Calculate the volumetric strain and the Lame's Constants

[6 Marks]

c) The state of strain at a point is;

$$\varepsilon_x = 0.001, \, \varepsilon_y = -0.003, \, \, \varepsilon_z = \gamma_{xy} = 0, \, \, \, \gamma_{xz} = -0.004, \, \gamma_{yz} = 0.001$$

d) Determine the stress tensor at this point. Take $E = 210 \times 10^6 kN/m^2$ and Poisson's ratio as 0.28. Also find the Lame's constant

QUESTION FOUR [20 Marks]

Discuss the Einstein's theory of specific heat of solids with regards;

i)	Why was it necessary	[1 Mark]
ii)	Its assumptions	[4 Marks]
iii)	Derive the lattice heat capacity based on this model	[9 Marks]
iv)	Explain/Compare it with experimental observation at high and low temperature	[6 Marks]

QUESTION FIVE [20 Marks]

Y	QUESTION TIVE 20 Marks			
a)	Explaining the assumptions clearly, derive the expression for lattice specific on the basis of Debye			
	model.	[12 Marks]		
b)	Discuss the high and low temperature limits and define T^3 law	[4 Marks]		
c)	Compare the Einstein and Debye models	[4 Marks]		