

FreeExams.co.ke

UNIVERSITY EXAMINATIONS **2022/2023 ACADEMIC YEAR** FIRST-YEAR FIRST SEMESTER SPECIAL/SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE

COURSE CODE: STA 112/STA 142

COURSE TITLE: INTRODUCTION TO PROBABILITY

DATE: 15/08/2023

TIME: 11:00 AM - 1:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS.

QUESTION ONE (30 MARKS)

- 1. (a) Explain the following terms as used in set theory (3 marks)
 - i. Set
 - ii. Element
 - iii. Power set
 - (b) Write down the power sets of A if $A = \{1, 2, 3\}$ (3 marks)
 - (c) Differentiate between a discrete random variable and a continuous random variable and give an example in each case. (3 marks)
 - (d) A random variable X has the probability distribution below

X	0	1	2	3	4	5	6	7	8
P(X=x)	a	3a	5a	7a	9a	11a	13a	15a	17a

- i. Determine the value of a (2 marks)
- ii. Find (4 marks)
 - A. P(X < 3)
 - B. $P(X \ge 3)$
 - C. P(0 < X < 5)
- (e) A committee of 4 people need to be selected from 5 women and 7 men. How many ways can the committee be selected if atleast 3 women must be included. (4 marks)
- (f) If A and B are any two events in S. Show that $P(A \cup B) = P(A) + P(B) P(A \cap B)$ (5 marks)
- (g) X be random variable with pdf

$$f(x) = \begin{cases} \frac{x}{10}, & x=1,2,3,4\\ 0, & elsewhere \end{cases}$$

Compute E(X), Var(X) and $E(5X^3-2X^2)$ (6 marks)

QUESTION TWO (20 marks)

(a) The table below shows probability distributions of means obtained by some students in an examination

X	9	14	17	20	22	26
P(X-x)	0.0811	a	0.1872	a	0.2162	0.1622

- i. Find the value of a
- ii. Find the expected mark and variance of the score
- iii. What is the probability that a random picked student from this class scored
 - A. more than 20 marks
 - B. between 14 and 21 marks inclusive
- (b) Prove the Bayes theorem

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{\sum_{i=1}^{n} P(A_i)P(B|A_i)}$$

QUESTION THREE (20 marks)

- (a) Three newspapers A, B and C are published in a town. It is estimated from survey that 20 percentage read A. 16 percentage read B and 14 percentage read C, 8 percentage read A and B, 5 percentage read A and C and 2 percentage read all the three papers. What is the probability that a randomly chosen person:
 - i. does not read any paper
 - ii. reads A but not B
 - iii. does not read C
 - iv. reads only one of these papers
 - v. reads only two of these papers
- (b) Let X have the pdf

$$f(x) = \begin{cases} \frac{1}{2}(x+1), & -1 < x < 1\\ 0, & elsewhere \end{cases}$$

Find

- i. Var(X)
- ii. Var(5X + 10)

QUESTION FOUR (20 marks)

- (a) Consider tossing two fair dice. Let X denote the outcome of the two dice and Y the absolute difference. Calculate the expected value of X and Y.
- (b) Let X be a random variable with a distribution function

$$f(x) = \begin{cases} Ax & 0 \le x \le 5 \\ A(10-x), & 5 \le x \le 10 \end{cases} \quad 0. \quad elsewhere$$

i. Find A such that f(x) is a pdf

ii. Find $P(2.5 \le X \le 7.5)$