

FreeExams.co.ke

UNIVERSITY EXAMINATIONS **2022/2023 ACADEMIC YEAR** THIRD YEAR SECOND SEMESTER SPECIAL/ SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: STA 324/STA 348

COURSE TITLE: STATISTICAL COMPUTING

DATE:

10/8/2023

TIME: 2:00 PM - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

HME: 2 Hours

This Paper Consists of 4 Printed Pages Please Turn Over

QUESTION ONE

- (a) Enumerate 4 ways in which SPSS can transform data (4 marks)
- (b) Income can be measured on several levels. Describe how income could be measured as an ordinal, interval and ratio measure. (6 marks)
- (c) List with details ,three compulsory and five optional requirements in creating a data file (8 marks)
- (d) A function Y is given by y=sin (x) and another function z is given by z= cos(x)
 Write m.scripts that can be executed in MATLAB to generate corresponding sine and cosine waves respectively
 (12 marks).

QUESTION TWO

A market researcher is interested in the coffee-drinking habits of males and females. He asks a sample of male and female office workers to record the number of cups of coffee they consume during a week.

- a) Which parametric statistical technique could the researcher use to determine if males and females differ in terms of the number of cups of coffee consumed in a week? Justify your answer and describe how you would obtain this statistic using SPSS.
- b) What are the key values you would look for in the output?
- e) What assumptions should you check for when using the technique that you chose in question (a), above?
- d) What non-parametric technique could be used to address this research question?

OUESTION THREE

- a) Suppose you have the following Research Question
 - To what extent does weight of a car in pounds predict miles per gallon in a U.S. dataset of 398 models of cars?
- i) Are the two variables discrete or continuous?
- ii) Are the two variables nominal, ordinal, interval or ratio scales?
- iii) Which statistical procedure could we use to test the research question?
- iv) What is the null hypothesis?
- v) What is your expectation?
- b) The regression SPSS output of the above question was as below. Use it to answer the following questions

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.807 ^a	.651	.650	4.622

a. Predictors: (Constant), Vehicle Weight (lbs.)

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	15794.632	1	15794.632	739.503	.000ª
	Residual	8457.943	396	21.358		
	Total	24252.575	397			

a. Predictors: (Constant), Vehicle Weight (lbs.)

Coefficients^a

Model		Unstandardized Coefficients		Standardized Coefficients			
		В	Std. Error	Beta	t	Sig.	
1	(Constant)	45.492	.841		54.110	.000	
	Vehicle Weight (lbs.)	007	.000	807	-27.194	.000	

a. Dependent Variable: Miles per Gallon

- i) How much variance in Miles Per Gallon is explained by Car Weight?
- ii) Is this variance explained significantly different to 0?
- iii) What is the constant
- iv) What is the slope?
- v) Is the slope statistically significant?
- vi) Write out the model regression equation
- vii) What is the standardised regression coefficient for vehicle weight?
- viii) If a car weighed 1000 pounds, what would be the predicted miles per gallon?
- ix) What is the standard error of the estimate?
- x) What would be the approximate 95% confidence interval of our prediction

b. Dependent Variable: Miles per Gallon

QUESTION FOUR

A matrix B is given by B=[1,4,3,2;2,1,3,2;1,2,3,4;5,2,1,4]

- (a). Describe how you can extract a 2 × 2 matrix from the third row and second column (4 marks).
- (b). Explain how you can determine the Mean, Standard Deviation of the first two columns of matrix B (6 marks)
- (c). The correlation coefficients of rows and columns in matrix B can be given by:

1.0000 -0.3149 -0.9685 0.4575

-0.3149 1.0000 0.1325 -0.2294

-0.9685 0.1325 1.0000 -0.5774

0.4575 -0.2294 -0.5774 1.0000

(i) . Describe how you can generate such correlation coefficients from matrix B using a MATLAB command. Explain statistical interpretations and importance of three sets of columns whose correlation coefficients are 1,0 and -1 respectively (10 marks)

QUESTION FIVE

ANOVA

m of Squares		Mean Square	The same of the sa	and the same of th
TOTAL SECTION AND ADDRESS OF THE PARTY OF TH	2	1392.095	4.409	.013
	1511	315.717		
1				
	2784.189 477048.215 479832.404	477048.215 1511	477048.215 1511 315.717	2784.189 2 1352.055 477048.215 1511 315.717

Multiple Comparisons

Dependent Variable: Age of Respondent

(J) Race of	Mean	Std.	Sig.		ce Interval
Respondent	Difference (I-	Error		Lower Bound	Upper Bound
	2 930	1.344	.029	.29	5.57
Black)	2 587	.030	.53	10.68
Other				-5.57	29
White		0.615-0.91	7	-2.87	8.23
Other			.030	-10.68	-,53
White				-8.23	2.8
	White	Black 2.930° Other 5.609° White -2.930° Other 2.679 White -5.609°	Black 2.930° 1.344 Other 5.609° 2.587 White -2.930° 1.344 Other 2.679 2.828 White -5.609° 2.587	Black 2.930° 1.344 .029 Other 5.609° 2.587 .030 White -2.930° 1.344 .029 Other 2.679 2.828 .344 White -5.609° 2.587 .030	Black 2.930° 1.344 0.29 .29 Other 5.609° 2.587 0.30 .53 White -2.930° 1.344 0.29 -5.57 White 2.679 2.828 344 -2.87 White -5.609° 2.587 0.30 -10.68 White 2.679 2.828 344 -8.23

^{*.} The mean difference is significant at the 0.05 level.

Consider the SPSS output above

- (a) State the Procedure for one-way between-groups ANOVA with post hoc tests
- (b) Explain the interpretation of output from one-way between-groups ANOVA with post hoc tests