

2022/2023 ACADEMIC YEAR FORTH YEAR FIRST SEMESTER MAIN EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: STA 414/STA 447

laj

COURSE TITLE: SURVIVAL ANALYSIS

DATE: 27/4/2023

TIME: 9 AM - 11 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION 1: (30 MARKS)

- (a) Comment on the Non-parametric and the parametric methods of analyzing survival data in terms of their efficiency. What is the recommended procedure when handling such data? (4 marks)
- (b) State the uses of the survivorship or survival functions (3 marks)
- (c) Illustrate how you would determine that a given data of survival time T come from an exponential distribution (4 marks)
- (d) i) What do you understand by the term Censoring? (2 marks)
 - ii) By use of suitable examples, distinguish right from left Censoring. (4 marks)
- (e) i) What do you understand by the term Truncation? (2 marks)
 - ii) Using suitable examples distinguish right from left Truncation (4 marks)
- (f) Let the survival time ,T follow the Weibull distribution with survivorship function, S(t) given as :

$$S(t) = e^{-(\lambda t)^{\gamma}}$$

Where γ and λ are parameters.

How would you ascertain the appropriate weibull fit for such survival data? (7 marks)

QUESTION 2: (20 MARKS)

(a) Given the Survival function,

$$S(t) = \exp(-t^{\gamma})$$

Derive the corresponding probability density function and the hazard function. (3 + 3 marks) (b) The time to death (in days) following a kidney transplant follows a Log-logistic distribution with $\alpha = 1.5$ and $\lambda = 0.01$. The probability density function of the Log-logistic distribution is

$$f(t) = \frac{\alpha t^{\alpha - 1} \lambda}{(1 + \lambda t^{\alpha})^2} \quad \text{for } t \ge 0; , , \alpha, \lambda > 0$$

- (i) Find the 50, 100 and 150 day survival probabilities for kidney transplantation in patients (2+2+2 marks)
- (ii) Show that the hazard rate is initially increasing and then decreasing over time (4 marks)
- (iii) Find the time at which the hazard rate changes from increasing to decreasing (4 marks)

Consider a clinical trial in which 10 lung cancer patients are followed to death. The table QUESTION 3: (20 MARKS) is given below.

Time,t (in months)	$\underline{\mathbf{i}}$
4 5 6 8 8 8 10 10	1 2 3 4 5 6 7 8 9
12	1 10 0,8895

- (a) Obtain the:
- Product limit (PL) estimate of the survivorship function, $\hat{S}(t)$.(5 marks) (i)
- (ii) Binomial estimate of the survivorship function, $\hat{S}(t)$ (5 marks)

(2 marks) Comment on the results so obtained in a (i) and a (ii) above.

(5+3 marks)(b) Find $Var[\hat{S}(5)]$ and hence the estimated standard error

QUESTION 4: (20 MARKS)

- (a) Let t_1 , t_2 , t_3 ,....., tn be the exact survival times of n individuals under study. State how you would find an estimate of the survivorship function S(t) from such a sample.(2 marks)
- (b) Suppose the following remission durations are observed from 10 patients (n=10) with solid tumors. Six patients relapse at 3.0, 6.5, 6.5, 10, 12 and 15 months; 1 patient is lost to follow up at 8.4 months; and 3 patients are still in remission at the end of study after 4.0, 5.7, and 10 months. (8 marks)
 - Calculate the estimate of the survival time, S(t) for this study (5+3 marks)
 - (ii) Plot S(t) verses t and estimate the median remission time
 - (iii) In this situation is it possible to calculate the Binomial estimate of the survival Function? Explain

QUESTION 5: (20 MARKS)

- (a) For the i^{th} individual, let values of P variables be $x_{1i}, x_{2i}, \dots, x_{pi}$. If $h_i(t)$ is the hazard function of the i^{th} individual, write an expression relating $h_i(t)$ and the baseline hazard, $h_0(t)$, making cox proportional hazards assumption.
- (b) Illustrate how you would estimate the coefficients of x_{ji} 's in (a) above
- (c) What are accelerated failure time models?
- (d) Assume survival time T_i follows exponential distribution with a parameter λ . Under the assumption of right Censored data, obtain the likelihood for the exponential model.