

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR YEAR FOUR SEMESTER ONE EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: STA 421

COURSE TITLE: MULTIVARIATE DATA ANALYSIS

DATE: 10/08/2023 TIME: 8:00AM-10:00AM

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTIONS ONE AND ANY OTHER TWO.

TIME: 2 HOURS

QUESTION ONE

[30 MARKS]

(a) (i) What is a mean vector

[1 mark]

(ii) Describe how multivariate data are arranged

[2 marks]

(b) The data below shows the scores of a sample of 15 students in mathematics, English and Kiswahili CATS in a certain school

$$\mathbf{X} = \begin{bmatrix} 4 & 8 & 6 & 8 & 9 \\ 8 & 7 & 4 & 4 & 10 \\ 10 & 9 & 7 & 5 & 9 \end{bmatrix}$$

Obtain

(i) Mean Vector

[3 marks]

(ii) Variance-Covariance matrix

[5 marks]

(iii)Correlation matrix

[3 marks]

(c) Let $\underline{x} = [5, 1, 3]'$ and $\underline{y} = [-1, 3, 1]'$ Find

(i) The length of \underline{x}

[1mark]

(ii) The angle between \underline{x} and \underline{y}

[2marks]

(iii) The length of the projection of \underline{x} on \underline{y}

[1mark]

(d) A random sample of 10 was obtained from a bivariate normal population with mean vector μ and a known variance-covariance matrix $\Sigma_0 = \begin{bmatrix} 4 & 4.2 \\ 4.2 & 9 \end{bmatrix}$ Find the principal component and hence Test at $\alpha = 0.01$ level of significance for $H_0: \mu = \mu_0$ vs $H_1: \mu \neq \mu_0$ where $\mu_0 = 6.5$ and the sample mean vector is $\overline{\underline{x}} = (5.8, 5.2)'$ [8 marks]

(e) If $\underline{a'} = (a_1, a_2, ..., a_p)$ is a non-zero vector of order p and $y = \underline{a'X}$. Show that

i) $E(\underline{a'X}) = \underline{a'}\mu$

[1 marks]

ii) $\operatorname{Var}(\underline{a'X}) = \underline{a'} \Sigma \underline{a}$

[3 marks]

QUESTION TWO

[20MARKS]

a) Let $X_1, X_2 ... X_n$ be random sample from a joint distribution which has mean vector μ and covariance matrix $\frac{\Sigma}{n}$. Show that sample mean, \overline{X} is unbiased; i.e. $E(\overline{X}) = \mu$ and $\frac{n}{n-1}\Sigma$ is the unbiased estimator of the sample variance S_n [6 marks]

b) Let
$$\Sigma = \begin{bmatrix} 25 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

[5 marks]

Determine the principal component Y₁, Y₂, Y₃. Comment on the eigenvectors (and principal components) associated with eigenvalues that are not distinct?

- c) Find all the Eigen-values of A, where, $A = \begin{bmatrix} 2 & 2 & 1 \\ 2 & 5 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ [6 marks]
- d) Show that A is a positive definite matrix

[4 marks]

QUESTION THREE

[20 MARKS]

(a) Consider the random variable $\mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix} \sim \mathbf{N} \begin{bmatrix} 1 \\ 2 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 & 0 & 1 & 3 \\ 0 & 4 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 3 & 1 & 1 & 9 \end{bmatrix}$. Find the

conditional distribution of $\begin{bmatrix} X_1 \\ X_3 \end{bmatrix}$ given $X_2 = x_2$ and $X_4 = x_4$.

[8 marks]

(b) For a bivariate normal distribution, use the data below to test at $\alpha = 0.05$ level the hypothesis

$$H_0: \boldsymbol{\mu} = (3.4, 6)'$$

 $H_1: \boldsymbol{\mu} = (3.4, 6)'$ Vs

$$\underline{X} = \begin{bmatrix} 3 & 4 & 5 & 6 & 2 \\ 9 & 5 & 7 & 2 & 8 \end{bmatrix}$$

[7 marks]

(c) Let \underline{x} be a random vector having the covariance matrix

$$\Sigma = \begin{cases} 4 & 1 & 0 \\ 1 & 16 & -5 \\ 0 & -5 & 36 \end{cases}$$

Obtain

(i) Square root of $\Sigma = \left(V^{\frac{1}{2}}\right)$

[2 marks]

(ii) Inverse of the square root $\Sigma = \left(V^{\frac{1}{2}}\right)^{-1}$

[1 mark]

(iii) Correlation matrix ρ defined by

$$\rho = \left(V^{\frac{1}{2}}\right)^{-1} \Sigma \left(V^{\frac{1}{2}}\right)^{-1}$$

[2marks]

QUESTION FOUR

[20 MARKS]

a.) Consider the following n = 7 observations on p = 2 variables

x_1	3	4	2	6	8	2	5
X2	5	5.5	4	7	10	5	7.5

- (i) Compute the sample means \bar{x}_1 and \bar{x}_2 and the sample variances S_{11} and S_{22} (4marks)
- (ii) Compute the sample covariance S_{12} and the sample correlation coefficient r_{12} and interpret these quantities (5marks)
- (iii) Display the sample mean array \bar{x} , the sample correlation array R and the sample variance-covariance S_{12} (3marks
- b.) A researcher considered five companies, x1, x2, x3, x4, x5 of Uchumi, Tuskys, Union Carbide, Eveready and Total for weekly rates of returns respectively. The means and correlation matrix, **R** are given below:

$$\overline{X} = \begin{bmatrix} 0.0054 \\ 0.0048 \\ 0.0057 \\ 0.0063 \\ 0.0037 \end{bmatrix}$$
 and $R = \begin{bmatrix} 1.000 & 0.577 & 0.509 & 0.387 & 0.462 \\ 0.577 & 1.000 & 0.599 & 0.389 & 0.322 \\ 0.509 & 0.599 & 1.000 & 0.436 & 0.426 \\ 0.387 & 0.389 & 0.436 & 1.000 & 0.523 \\ 0.462 & 0.322 & 0.426 & 0.523 & 1.000 \end{bmatrix}$

The eigenvalues and corresponding normalized eigenvectors of R were determined by a computer and are given below:

$$\hat{\lambda}_1 = 2.857, \ \hat{\gamma}_1 = \begin{bmatrix} 0.464, \ 0.457, \ 0.470, \ 0.421, \ 0.421 \end{bmatrix}$$

$$\hat{\lambda}_1 = 0.809, \ \hat{\gamma}_2 = \begin{bmatrix} 0.240, \ 0.509, \ 0.260, \ -0.526, \ -0.582 \end{bmatrix}$$

$$\hat{\lambda}_3 = 0.540, \ \hat{\gamma}_3 = \begin{bmatrix} -0.612, \ 0.178, \ 0.335, \ -0.541, \ -0.435 \end{bmatrix}$$

$$\hat{\lambda}_4 = 0.452, \ \hat{\gamma}_4 = \begin{bmatrix} 0.387, \ 0.206, \ -0.662, \ 0.472, \ -0.382 \end{bmatrix}$$

$$\hat{\lambda}_5 = 0.343, \ \hat{\gamma}_5 = \begin{bmatrix} -0.451, \ 0.676, \ -0.400, \ -0.1761, \ 0.385 \end{bmatrix}$$

i) Write down principal components that accounts for the communality of at least 73% of variations.

[5 marks]

ii) Interpret the results of the above PCA as fully as possible in terms of data characterization [3 marks]

QUESTION FIVE

[20 MARKS]

(a) Find the maximum likelihood estimators of the mean vector $\underline{\mu}$ and covariance matrix Σ based on the data matrix (6marks)

$$x = \begin{bmatrix} 42 & 4 \\ 52 & 5 \\ 48 & 4 \\ 58 & 3 \end{bmatrix}$$

(b) Given the data matrix

$$x = \begin{bmatrix} 1 & 2 & 5 \\ 4 & 1 & 6 \\ 4 & 0 & 4 \end{bmatrix}$$

Define $X_c = X - 1 \overline{x}'$ as the mean corrected data matrix.

(i) Obtain the mean corrected data matrix

(4marks)

(ii) Obtain the sample covariance matrix

(4marks)

- (iii) The generalized variance and hence verify that columns of mean corrected data matrix are linearly dependent. (3marks)
- (iv) Specify a vector $a' = [a_1 a_2 a_3]$ that establishes the linear dependence

(3marks)