

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE MATHEMATICS/EDUCATION

COURSE CODE: STA 424

COURSE TITLE: STOCHASTIC PROCESSES II

DATE: 21/11/2022 TIME: 11:00 AM - 1:00

PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION 1: (30 Marks)

a) Define the following terms

	T state	
1.	Transient state	
• •	Translin state	

1.	Talistelli state	[1mk]
;;	Ergodic state	
		[1mk]
iii.	Recurrent state	

- b) Let X have the distribution of the geometric distribution of the form $Prob(X = k) = p_k = q^{k-2} p$, k = 2, 3, 4, ...Obtain the probability generating function and hence find its mean and variance
- c) Given that random variable X have probability density function $pr(X = k) = p_k$ k = 0, 1, 2, 3, ... with probability generating function $P(S) = \sum_{k=1}^{\infty} p_k s^k$ and $q_k = p_k (X = k) = p_{k+1} + p_{k+2} + p_{k+3} + \cdots$ with generating function $\phi(s) = \sum_{i=1}^{\infty} q_k s^k$ Show that $(1-s)\phi(s)=1-p(s)$ and that $E(X)=\phi(1)$ [6mks]
- d) Find the generating function for the sequence $\{0, 0, 0, 7, 7, 7, 7, ...\}$ mks]
- e) Classify the state of the following transitional matrix of the markov chains

ic o		E_2	E_3	E_4	E_5	
E	$\lceil 1/2 \rceil$	1/2	0	0	0]
E_2	1/2	1/2 0 0 :	1/2	0	0	
E_2	1/2	0	0	1/2	0	}
:	} :	- }	:	:	:	: {
:	1/2	0	0	0	0]

[10mks]

[1mk]

QUESTION 2: (20 Marks)

- a) Let X have a Bernoulli distribution with parameters p and q given by $P_r(X=k) = P_k = P^k q^{1-k}, \quad q=1-p, \quad k=0,1$ Obtain the probability generating function of X and hence find its [6mks] mean and variance.
- b) The difference differential equation for pure birth process are $P_n'(t)=\lambda_n p_n(t)+\lambda_{n-1} p_{n-1}(t), \quad n\geq 1$ and $P_0'(t) = -\lambda_0 p_0(t), \ n = 0.$

Obtain $P_n(t)$ for a non – stationary pure birth process (Poisson process) with $\lambda_n = \lambda$ given that

$$P_0(t) = \begin{cases} 1 & for \ n = 0 \\ 0 & otherwise \end{cases}$$

Hence obtain its mean and variance

[14mks]

QUESTION 3: (20 Marks)

a) Let X have a Poisson distribution with parameter λ i.e.

Prob
$$(X = k) = p_k = \frac{e^{-\lambda} \lambda^k}{k!}, \ k = 0, 1, 2, 3, ...$$

Obtain the probability generating function of X and hence obtain its mean [5mks] and variance

b) Using Feller's method, find the mean and variance of the difference differential equation

$$P_n'(t)=-n(\lambda+\mu)p_n(t)+(n-1)\lambda p_{n-1}(t)+\mu(n+1)p_{n+1}(t),$$
 $n\geq 1$ given

$$m_1(t)=\sum_{n=0}^{\infty}np_n(t)$$
 , $m_2(t)=\sum_{n=0}^{\infty}n^2p_n(t)$ and

$$m_1(t)$$
 $= \sum_{n=0}^{\infty} n^3 p_n(t)$ conditioned on $p_1(0) = 0$, $p_n(0) = 0$, $n \neq 0$

[14mks]

QUESTION 4: (20 Marks)

a) Define the following terms

	the the following terms	[1]
i	Absorbing state	[1mk]
	Irreducible markov chains	[1mk]
11.		[1mk]
	D : 1 C - tate of markov chains	

Period of a state of markov chains 111.

b) Consider a series of Bernoulli trials with probability of success P. Suppose that X denote the number of failures preceding the first success and Y the number of failures following the first success and preceding the second success. The joint pdf of X and Y is given by

 $P_{ij} = pr\{X = j, Y = k\} = q^{j+k}p^2$ j, k = 0, 1, 2, 3, ...

Obtain the Bivariate probability generating function of X and Y

2mks [2mks]

Obtain the marginal probability generating function of Xii. [2mks]

Obtain the mean and variance of X iii. [2mks] Obtain the mean and variance of Y iv.