

FreeExams.co.ke

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR FIRST-YEAR FIRST SEMESTER MAIN EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE IN STATISTICS

COURSE CODE: STA 803

COURSE TITLE: THEORY OF ESTIMATION

DATE: 16/08/2023 **TIME**: 9:00 AM - 11:00 AM

INSTRUCTIONS TO CANDIDATES

Answer Any THREE Questions

TIME: 2 Hours

QUESTION ONE (20 MARKS)

a) Let X_1 and X_2 be independent Poisson variables with common expectations λ so that the joint distribution is

$$p(X_1 = x_1, X_2 = x_2) = \frac{\lambda^{x_1 + x_2}}{x_1! x_2!} e^{-2\lambda}$$

Show that T is sufficient for λ

b) Consider the normal density function with parameter (μ, δ) $f(x/\mu, \delta) = \frac{1}{2\pi\delta^2} \exp{-\frac{1}{2\delta^2}(x-\mu)^2} \text{ find sufficient statistics for } \mu, \delta$

QUESTION TWO (20 MARKS)

- a) Define and state the significance of statistical inference
- b) With illustrations discuss four properties of a good estimator
- c) State the Rao Blackwell Theorem
- d) State and prove the Cramer Rao lower bound

QUESTION THREE (20 MARKS)

- a) Highlight the properties of an exponential family and determine if normal density with unknown mean and variance 1 belongs to an exponential family
- b) Consider $f(x; \theta) = \theta^x (1 \theta)^{1-x}$, determine if the density function belongs to an exponential family
- c) When do we say that an exponential family is canonical?

QUESTION FOUR (20 MARKS)

Let $x_1, x_2, \dots x_2$ be a random sample from a binomial experiment with parameters; n and p. Find;

- a) The estimator of *p*
- b) The asymptotic variance of the estimator
- c) Bias of the estimator
- d) Mean square error of the estimator

QUESTION FIVE (20 MARKS)

- a) Describe step by step how the moment generating function of an exponential family can be obtained
- a) Let x_i ; $i=1,2,\ldots,n$ be a random sample from a normal distribution with unknown mean μ and known variance δ^2 . Obtain the CR (Cramer Rao) lower bound for the unbiased estimator μ . Hence UMVU of μ
- b) Show that for a random sample from a normal population, the sample variance S^2 is a consistent estimator of δ^2