

FreeExams.co.ke

UNIVERSITY EXAMINATIONS 2016/2017 ACADEMIC YEAR SECOND YEAR FIRST SEMESTER FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS AND EDUCATION SCIENCE/ARTS (SB)

COURSE CODE: MAT 203

COURSE TITLE: VECTOR ANALYSIS

DATE: 66/12/18

TIME: 11.30-1.30PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 2 Printed Pages. Please Turn Over.

QUESTION 1.

- (a) Distinguish between a scalar and a vector quantity and give two examples of each. (4mks)
- (b) Given that A = 2i 3j k, and B = i + 4j 2k, show that $A \times B = -B \times A$. (5mks)
- (c) Find the unit vector parallel to the resultant of the vectors $\mathbf{r_1} = 2\mathbf{i} + 4\mathbf{j} 5\mathbf{k}$, $\mathbf{r_2} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$; Resultant vector $\mathbf{R} = \mathbf{r_1} + \mathbf{r_2}$. (5mks)
- (d) Evaluate the directional derivative of $\varphi=x^2\,yz+4xz^2$ at (1, -2, -1) in the direction 2i –j 2k. **(5mks)**
- (e) Determine the divergence and curl of the vector field $\mathbf{F} = x_i + y_j$. (5mks)
- (f) State the following theorems.
 - (i) Stokes theorem. (3mks)
 - (ii) Greens theorem. (3mks)

QUESTION 2

- (a) Find the dot product A.B given that A = 3i + 3j and B = -5i.(5mks)
- (b) Find θ for non zero vectors **A** and **B** where **A** = 2i j + 3k and **B** = l + j + k. (5mks)
- (c) Find a vector perpendicular to the plane determined by the 3 vectors $\mathbf{A} = (1, 3, 2)$, $\mathbf{B} = (4, -1, 1)$ and $\mathbf{C} = (3, 0, 2)$. (5mks).
- (d) Determine a unit vector perpendicular to the plane of P = 2i 6j 3k and Q = 4i + 3j k. (5mks)

QUESTION 3.

Use Green's Theorem to evaluate the following

- (a) $\oint_c xydx x^2y^3 dy$ where c is the triangle with vertices (0, 0), (0, 1) and (1, 1) positively oriented.
- (b) Show how the Greens theorem may work with regions with holes. (20mks)

QUESTION 4

- (a) State the divergence theorem.
- (b) Using four points describe the divergence theorem.
- (c) Use the divergence theorem to evaluate $\iint_S \mathbf{F} \cdot ds$ where $\mathbf{F} = xyi \frac{1}{2}y^2j + zk$ and the surface consists of 3 surfaces $z = 4 3x^2 3y^2$, $1 \le z \le 4$ on the top, $x^2 + y^2 = 1$, $0 \le z \le 1$ on the sides and z = 0 on the bottom. (20mks)

QUESTION 5

- (a) Find the gradient of the scalar field $W = 10r Sin^2 \theta Cos \theta$. (3mks)
- (b) Given $\mathbf{Q} = x^2y^2 + xyz$, compute $\nabla \mathbf{W}$ and the direction derivative $\frac{dW}{dl}$ in the direction $3a_x + 4a_y + 12a_z$ at (2, -1, 0). (3mks)
- (c) Find the angle at which the line x = y = 2z intersects the ellipsoid $x^2 + y^2 + 2z^2 = 0$. (14mks)