

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR THIRD YEAR SECOND SEMESTER SPECIAL/ SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION AND

BACHELOR OF SCIENCE MATHEMATICS

COURSE CODE: MAT 304

COURSE TITLE: COMPLEX ANALYSIS I

DATE: 12/10/18

TIME: 8 AM -10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE: COMPULSORY (30 MARKS)

- $f(z) = \sin z$, find the Maclaurious series (5 marks)
- b) If z_1 and z_2 are complex numbers, prove that $|z_1 + z_2| \le |z_1| + |z_2|$ (6 marks)
- c) For which values of Z is the function continuous $f(z) = \frac{z}{(z-i)(z+i)}$ (4marks)
- d)Giventhat $w = f(z) = z^2$, find the values of w that correspond to z = -3 + i5(4 marks)
- e) Evaluate $\oint_c \frac{e^z}{(z+1)^2} dz$ where c is the circle |z-1|=3(7 marks)
- f) Determine the poles of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ (4 marks)

QUESTION TWO (20 MARKS)

a) Evaluate $f(z) = \frac{1}{1-z}$ at a = 3 using Taylors' series

(6 marks)

b) State and prove the Residue Theorem

- (5marks)
- c) Find the residues of $f(z) = \frac{z^2 2z}{(z+1)^2(z^2+4)}$ at all its poles in the finite plane and hence evaluate $\oint f(z)dz$ (9marks)

QUESTION THREE (20 MARKS)

a) Evaluate $\int_{1+z}^{z+3} (z^2+z) dz$ along the line joining the points (1, -1) and (2, 3)

(6marks)

- b) Evaluate $\oint_c \frac{2z-1}{z(z+1)(z-1)} dz$, where c is the *circle* |z| = 2(7 marks)
- c) Evaluate the integral $\int_0^{4+2i} \overline{Z} dz$ along the curve $Z = t^2 + it$ (7 marks)

QUESTION FOUR (20 MARKS)

- a) Find the first four terms of the Taylor series expansion of $f(z) = \ln(1+z)$ about the point z = 0
- b) Using Cauchy's integral formula, evaluate $\int \frac{2z^2+z}{z^2-1}dz$ where C is |z-1|=1(7 marks)
- c) If f(z) is analytic within and on simple closed curve C and if a is any point within C, show that $f(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z-a} dz$ (6 marks)

QUESTION FIVE(20 MARKS)

- a) Evaluate $\oint_C \frac{3z^2+z}{z^2-1} dz$ where C is a circle |z-1|=1 (10 marks) b) Locate and name the singularities in the finite Z-plane $f(z)=\frac{z}{(z^2+4)^2}$ determine whether it is isolated singularity or not . (10 marks)