

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR THIRD YEAR FIRST SEMESTER SPECIAL/ SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: MAT 351

COURSE TITLE: ENGINEERING MATHEMATICS III

DATE: 19/10/18 **TÎME**: 8 AM -10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- a) Write down how Fourier coefficients a_0, a_n and b_n can be obtained. (3 Marks)
- b) Define Fourier Series as used in Engineering mathematics. (1 Mark)
- c) State any four properties of Laplace Transforms. (4 Marks)
- d) Prove that (i) $L(1) = \frac{1}{s}$ (4 Marks)

(ii)
$$L[Sinh(at)] = \frac{a}{s^2 + a^2}$$
 (6 Marks)

- e) Write down the solutions to the following inverse Laplace transforms. (4 Marks)
 - i) $L^{-1}\left(\frac{1}{s^2-a^2}\right)$ (ii) $L^{-1}\left(\frac{1}{s^2+a^2}\right)$ (iii) $L^{-1}\left(1\right)$ (iv) $L^{-1}\left(\frac{s}{s^2+a^2}\right)$
- f) Evaluate $\lim_{\substack{x\to 0\\y\to 0}} \frac{2xy}{3x^2 + y^2}$ (2 Marks)
- g) Find the unit vector normal to the surface $3x^2 + y^2 + 2z^2 = 8$ at p(2,0,1) (5 Marks)

QUESTION TWO (20 MARKS)

- a) Compute $\int_C F.dr$ where $F = \frac{iy jx}{x^2 + y^2}$ and C is the circle $x^2 + y^2 = 1$ traversed counterclockwise. (12 Marks)
- b) If $\phi = x^2 y 2y^3 z^2$. Find $grad.\phi$ at point (-1,2,1) (8 Marks)

QUESTION THREE (20 MARKS)

- a) Use Green's Theorem to evaluate $\int_C (x^2 + xy) dx + (x^2 + y^2) dy$ where C is the square formed by the lines $y = \pm 1, x = \pm 1$ (8 Marks)
- b) Find the Fourier half range even expression of the function

$$f(x) = \left(-\frac{\pi}{L}\right) + 1, \dots 0 \le x \le L \text{ given that} \quad a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx$$
 (12 Marks)

QUESTION FOUR (20 MARKS)

- a) State five advantages of Fourier series. (5 Marks)
- b) Find $\frac{\partial u}{\partial r}$ and $\frac{\partial u}{\partial \theta}$ if $u = e^{r\cos\theta} \cdot Cos(rSin\theta)$ (9 Marks)
- c) Find the directional derivative of the scalar function $f(x, y, z) = x^2 + xy + z^2$ at the point A(-1,-1,1) in the direction of the line AB where B has coordinated (-3,2,1) (6 Marks)

QUESTION FIVE (20 MARKS)

- a) What are the differences between:
- (i) Partial and Total Differential Equations.

(2 Marks)

(ii) Vector and Scalar Quantity

(1 Mark)

- b) Find the Fourier Series for the function $f(x) = x^2$ in the interval $0 \le x \le 2\pi$ (10 Marks)
- c) Find the Laplace transform of $t \cos(at)$

(7 Marks)