

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER SPECIAL/ SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: MAT 422

COURSE TITLE: PDE II

DATE: 12/10/18

TIME: 11.30 AM -1.30 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTIONONE (30 Mks)

(a) Solve the equation
$$S = 2x + 2y$$
 (15Mks)

(b) Find the solution of the wave equation

$$\frac{d^2u}{dt^2} - \frac{c^2d^2u}{dx^2} = 0$$

Satisfying the initial conditions when u(x,0) = 0, $u_t(x,0) = \sin 2x$ (15Mks)

QUESTION TWO (20Mks)

- (a) Distinguish between
 - (i) linear and homogeneous differential equation. (2Mks)
 - (ii) linear and non-homogeneous differential equation (2Mks)
 - (iii) linearly dependant and linearly independent functions (2Mks)
- (b) (i) define a wronskian (2Mks)
 - (ii) given that $f(x) = x^2$, $f_2(x) = \sin x \cos x$. Find $W(f_1, f_2)$ at $x = \frac{\pi}{4}$ (4Mks)
- (c) Show that the equation $x^3y^{\prime\prime\prime}-6xy^\prime+12y=0$ has 3 linearly independent solutions of the form $y=x^\prime$ (8Mks)
- (d) Find the general solution of the equation $Xu_X Yu_Y + u = X$ (10Mks)

QUESTION THREE (20 Mks)

(a) The general form of a linear's 1st order of p.d.e is

$$a(x,y)u_x+b(xy)u_y+c(xy)=d(xy)$$

Where $u_x=\frac{du}{dx}$ $u_y=\frac{du}{dy}$, and the coefficients a,b,c and d are functions of x and y in some domain D in xy plane. Show that the characteristic equation of the above p.d.e is given $\frac{dy}{dx}=\frac{b}{a}$ (14Mks)

(b) Find a particular integral of the equation $\frac{\partial^2 z}{\partial x^x} - \frac{\partial z}{\partial y} = e^{2x+y}$ (6Mks)

QUESTION FOUR (20 MKS)

A metal bar of length π has its ends isolated. If the initial temperature of the bar is

 $x(\pi-x)$. Find the distribution of the temperature in the bar at a later time for the heat equation $K^2u_{xx}=u_t$ satisfying

$$u(0,t) = 0$$

$$u(\pi,t) = 0$$

$$0 \le + \le \infty$$

$$u(x,0) = x(\pi x)$$
(20Mks)

QUESTION FIVE (20MKS)

- (a) Find a surface satisfying the differential equation $t = 6x^3y$ which contains the two lines y = o = z and y = 1 = z (10Mks)
- (b) Distinguish between Dirichlet's and Neumann conditions of heat condution

(6Mks)

(c) Solve the p.d.e $d^2y/dx^2dy=2$ (4Mks)