

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR FIRST YEAR SECOND SEMESTER SPECIAL/ SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE IN STATISTICS

COURSE CODE:

STA 851

COURSE TITLE:

CATEGORICAL DATA ANALYSIS

12

DATE:

08/10/18

TIME: 8 AM -11 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any Other TWO Questions

TIME: 3 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- (a) Explain the following terms us used in categorical data analysis
 - (i) Response variable
 - (ii) Nominal variable
 - (iii) Relative risk
 - (iv) Odds ratio
- (b) Explain in details the main probability distribution models in categorical data analysis

The following table was taken from the General Social Survey:

Dal	linf	in	Af	tar	ifa
DE	1161	111	71	LCI	1110

Race	Yes	No or Undecided	Total
White	31	12	43
Black	9	4	13

Find the relative risk and the 95% approximate confidence interval for the true value of the relative risk. $(z_{.95} = 1.645; z_{.975} = 1.96)$

QUESTION TWO (20 Marks)

In the United States, the estimated annual probability that a woman over the age of 35 dies of lung cancer equals 0.001304 for current smokers and 0.000121 for nonsmokers ½M. Pagano and K. Gauvreau, *Principles of Biostatistics*, Duxbury Press, Pacific Grove, CA. 1993, p. 134.

- a. Find and interpret the difference of proportions and the relative risk. Which measure is more informative for these data? Why?
- b. Find and interpret the odds ratio. Explain why the relative risk and odds ratio take similar values.

QUESTION THREE (20 MKS)

The Table below shows the results of a retrospective study comparing radia-tion therapy with surgery in treating cancer of the larynx. The response

TABLE 3.13 Data for Problem 3.13

	Cancer Controlled	Cancer Not Controlled
Surgery	21	2
Radiation therapy	15	3

Source: Reprinted with permission from W. M. Mendenhall, R. R. Million, D. E. Sharkey, and N. J. Cassisi, Internat. J.

SAS OUTPUT

Fisher's Exact T	Test				
Cell (1,1) Frequency (F)			21		
Left-sided Pr <= F		0.8	947		
Right-sided Pr >= F		0.3	808		
Table Probability (P)		0.2	755		
Two-sided Pr<= P		0.6	384		
Odds Ratio		2.1	000		
Asymptotic Conf Limits:	95%	Lower	Conf	Limit	0.3116
	95%	Upper	Conf	Limit	14.1523
Exact Conf Limits:	95%	Lower	Conf	Limit	0.2089
	95%	Upper	Conf	Limit	27.5522
-					207

indicates whether the cancer was controlled for at least two years following treatment.

- a. Report and interpret the *P*-value for Fisher's exact test with 1 i. 1 i. 1, and 1 ii. 1 ii. 1 ii. 1. Explain how the *P*-values are calculated.
- b. Interpret the confidence intervals for . Explain the difference between them and how they were calculated.
- c. Find and interpret the one-sided mid-P-value. Give advantages and disadvantages of this type of P-value.

QUESTION FOUR (20 MKS)

- (a) Describe the purpose of the link function of a GLM. What is the identity link? Explain why it is not often used with binomial or Poisson responses.
- (b) Explain how logistic regression model is applied in categorical data analysis

QUESTION FIVE (20 MKS)

Suppose we have the following three-way contingency table:

Victim's	Defendant's Race	Death Penalty		
Race		Yes	No	Total
White	White	2	13	15
	Black	1	5	6
	Total	3	18	21
Black	White	0	5	5
	Black	1	15	16
	Total	1	20	21

- (a). Compute and interpret the sample conditional odds ratios, adding 0.5 to each cell to reduce the impact of the 0 cell count.
- (b). Test the hypothesis that death penalty is independent of defendant's race, controlling for victim's race using the Cochran-Mantel-Haenszel test with $\alpha=5\%$. ($\chi^2(.95)=3.8415, \chi^2(.95)$